ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning of quantum interference in top-gated graphene on SiC

236   0   0.0 ( 0 )
 نشر من قبل Stefan Heun
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on quantum-interference measurements in top-gated Hall bars of monolayer graphene epitaxially grown on the Si face of SiC, in which the transition from negative to positive magnetoresistance was achieved varying temperature and charge density. We perform a systematic study of the quantum corrections to the magnetoresistance due to quantum interference of quasiparticles and electron-electron interaction. We analyze the contribution of the different scattering mechanisms affecting the magnetotransport in the $-2.0 times 10^{10}$ cm$^{-2}$ to $3.75 times 10^{11}$ cm$^{-2}$ density region and find a significant influence of the charge density on the intravalley scattering time. Furthermore, we observe a modulation of the electron-electron interaction with charge density not accounted for by present theory. Our results clarify the role of quantum transport in SiC-based devices, which will be relevant in the development of a graphene-based technology for coherent electronics.

قيم البحث

اقرأ أيضاً

131 - Y. Q. Wu , P. D. Ye , M.A. Capano 2008
Top-gated, few-layer graphene field-effect transistors (FETs) fabricated on thermally-decomposed semi-insulating 4H-SiC substrates are demonstrated. Physical vapor deposited SiO2 is used as the gate dielectric. A two-dimensional hexagonal arrangement of carbon atoms with the correct lattice vectors, observed by high-resolution scanning tunneling microscopy, confirms the formation of multiple graphene layers on top of the SiC substrates. The observation of n-type and p-type transition further verifies Dirac Fermions unique transport properties in graphene layers. The measured electron and hole mobility on these fabricated graphene FETs are as high as 5400 cm2/Vs and 4400 cm2/Vs respectively, which are much larger than the corresponding values from conventional SiC or silicon.
147 - T. Shen , J.J. Gu , M. Xu 2009
Epitaxial graphene films were formed on the Si-face of semi-insulating 4H-SiC substrates by a high temperature sublimation process. A high-k gate stack on epitaxial graphene is realized by inserting a fully oxidized nanometer thin aluminum film as a seeding layer followed by an atomic-layer deposition process. The electrical properties of epitaxial graphene films are sustained after gate stack formation without significant degradation. At low temperatures, the quantum-Hall effect in Hall resistance is observed along with pronounced Shubnikov-de Hass oscillations in diagonal magneto-resistance of gated epitaxial graphene on SiC (0001).
94 - T. P. Collier , V. A. Saroka , 2017
We theoretically investigate the optical functionality of a semiconducting quantum ring manipulated by two electrostatic lateral gates used to induce a double quantum well along the ring. The well parameters and corresponding inter-level spacings, wh ich lie in the THz range, are highly sensitive to the gate voltages. Our analysis shows that selection rules for inter-level dipole transitions, caused by linearly polarized excitations, depend on the polarization angle with respect to the gates. In striking difference from the conventional symmetric double well potential, the ring geometry permits polarization-dependent transitions between the ground and second excited states, allowing the use of this structure in a three-level lasing scheme.
We report the first experimental study of the quantum interference correction to the conductivity of bilayer graphene. Low-field, positive magnetoconductivity due to the weak localisation effect is investigated at different carrier densities, includi ng those around the electroneutrality region. Unlike conventional 2D systems, weak localisation in bilayer graphene is affected by elastic scattering processes such as intervalley scattering. Analysis of the dephasing determined from the magnetoconductivity is complemented by a study of the field- and density-dependent fluctuations of the conductance. Good agreement in the value of the coherence length is found between these two studies.
The unusual electronic properties of single-layer graphene make it a promising material system for fundamental advances in physics, and an attractive platform for new device technologies. Graphenes spin transport properties are expected to be particu larly interesting, with predictions for extremely long coherence times and intrinsic spin-polarized states at zero field. In order to test such predictions, it is necessary to measure the spin polarization of electrical currents in graphene. Here, we resolve spin transport directly from conductance features that are caused by quantum interference. These features split visibly in an in-plane magnetic field, similar to Zeeman splitting in atomic and quantum dot systems. The spin-polarized conductance features that are the subject of this work may, in the future, lead to the development of graphene devices incorporating interference-based spin filters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا