ﻻ يوجد ملخص باللغة العربية
Three types of first generation epitaxial graphene field effect transistors (FET) are presented and their relative merits are discussed. Graphene is epitaxially grown on both the carbon and silicon faces of hexagonal silicon carbide and patterned with electron beam lithography. The channels have a Hall bar geometry to facilitate magnetoresistance measurements. FETs patterned on the Si-face exhibit off-to-on channel resistance ratios that exceed 30. C-face FETs have lower off-to-on resistance ratios, but their mobilities (up to 5000 cm2/Vs) are much larger than that for Si-face transistors. Initial investigations into all-graphene side gate FET structures are promising.
Top-gated, few-layer graphene field-effect transistors (FETs) fabricated on thermally-decomposed semi-insulating 4H-SiC substrates are demonstrated. Physical vapor deposited SiO2 is used as the gate dielectric. A two-dimensional hexagonal arrangement
The high-frequency transconductance and current noise of top-gated single carbon nanotube transistors have been measured and used to investigate hot electron effects in one-dimensional transistors. Results are in good agreement with a theory of 1-dim
This paper describes the behavior of top gated transistors fabricated using carbon, particularly epitaxial graphene on SiC, as the active material. In the past decade research has identified carbon-based electronics as a possible alternative to silic
We report results of experimental investigation of the low-frequency noise in the top-gate graphene transistors. The back-gate graphene devices were modified via addition of the top gate separated by 20 nm of HfO2 from the single-layer graphene chann
For the first time, n-type few-layer MoS2 field-effect transistors with graphene/Ti as the hetero-contacts have been fabricated, showing more than 160 mA/mm drain current at 1 {mu}m gate length with an on-off current ratio of 107. The enhanced electr