ترغب بنشر مسار تعليمي؟ اضغط هنا

L-infinity algebra connections and applications to String- and Chern-Simons n-transport

34   0   0.0 ( 0 )
 نشر من قبل Urs Schreiber
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a generalization of the notion of a Cartan-Ehresmann connection from Lie algebras to L-infinity algebras and use it to study the obstruction theory of lifts through higher String-like extensions of Lie algebras. We find (generalized) Chern-Simons and BF-theory functionals this way and describe aspects of their parallel transport and quantization. It is known that over a D-brane the Kalb-Ramond background field of the string restricts to a 2-bundle with connection (a gerbe) which can be seen as the obstruction to lifting the PU(H)-bundle on the D-brane to a U(H)-bundle. We discuss how this phenomenon generalizes from the ordinary central extension U(1) -> U(H) -> PU(H) to higher categorical central extensions, like the String-extension BU(1) -> String(G) -> G. Here the obstruction to the lift is a 3-bundle with connection (a 2-gerbe): the Chern-Simons 3-bundle classified by the first Pontrjagin class. For G = Spin(n) this obstructs the existence of a String-structure. We discuss how to describe this obstruction problem in terms of Lie n-algebras and their corresponding categorified Cartan-Ehresmann connections. Generalizations even beyond String-extensions are then straightforward. For G = Spin(n) the next step is Fivebrane structures whose existence is obstructed by certain generalized Chern-Simons 7-bundles classified by the second Pontrjagin class.



قيم البحث

اقرأ أيضاً

78 - D. Senechal 1992
We argue that a simple Yukawa coupling between the $O(3)$ nonlinear $s$-model and charged Dirac fermions leads, after one-loop quantum corrections, to a Meissner effect, in the disordered phase of the nonlinear $s$-model.
We give a direct calculation of the curvature of the Hitchin connection, in geometric quantization on a symplectic manifold, using only differential geometric techniques. In particular, we establish that the curvature acts as a first-order operator o n the quantum spaces. Projective flatness follows if the Kahler structures do not admit holomorphic vector fields. Following Witten, we define a complex variant of the Hitchin connection on the bundle of prequantum spaces. The curvature is essentially unchanged, so projective flatness holds in the same cases. Finally, the results are applied to quantum Chern-Simons theory, both for compact and complex gauge groups.
The perturbative Chern-Simons theory is studied in a finite-dimensional version or assuming that the propagator satisfies certain properties (as is the case, e.g., with the propagator defined by Axelrod and Singer). It turns out that the effective BV action is a function on cohomology (with shifted degrees) that solves the quantum master equation and is defined modulo certain canonical transformations that can be characterized completely. Out of it one obtains invariants.
We study several aspects of the extended thermodynamics of BTZ black holes with thermodynamic mass $M=alpha m + gamma frac{j}{ell}$ and angular momentum $J = alpha j + gamma ell m$, for general values of the parameters $(alpha, gamma)$ ranging from r egular ($alpha=1, gamma=0$) to exotic ($alpha=0, gamma=1$). We show that there exist two distinct behaviours for the black holes, one when $alpha > gamma$ (mostly regular), and the other when $gamma < alpha$ (mostly exotic). We find that the Smarr formula holds for all $(alpha, gamma)$. We derive the corresponding thermodynamic volumes, which we find to be positive provided $alpha$ and $gamma$ satisfy a certain constraint. The dependence of pressure on volume is unremarkable and strictly decreasing when $alpha > gamma$, but a maximum volume emerges for large $Jgg T$ when $gamma > alpha$; consequently an exotic black hole of a given horizon circumference and temperature can exist in two distinct anti de Sitter backgrounds. We compute the reverse isoperimetric ratio, and study the Gibbs free energy and criticality conditions for each. Finally we investigate the complexity growth of these objects and find that they are all proportional to the complexity of the BTZ black hole. Somewhat surprisingly, purely exotic BTZ black holes have vanishing complexity growth.
We use Dirac matrix representations of the Clifford algebra to build fracton models on the lattice and their effective Chern-Simons-like theory. As an example we build lattice fractons in odd $D$ spatial dimensions and their $(D+1)$ effective theory. The model possesses an anti-symmetric $K$ matrix resembling that of hierarchical quantum Hall states. The gauge charges are conserved in sub-dimensional manifolds which ensures the fractonic behavior. The construction extends to any lattice fracton model built from commuting projectors and with tensor products of spin-$1/2$ degrees of freedom at the sites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا