ترغب بنشر مسار تعليمي؟ اضغط هنا

Remarks on Chern-Simons invariants

357   0   0.0 ( 0 )
 نشر من قبل Alberto S. Cattaneo
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The perturbative Chern-Simons theory is studied in a finite-dimensional version or assuming that the propagator satisfies certain properties (as is the case, e.g., with the propagator defined by Axelrod and Singer). It turns out that the effective BV action is a function on cohomology (with shifted degrees) that solves the quantum master equation and is defined modulo certain canonical transformations that can be characterized completely. Out of it one obtains invariants.



قيم البحث

اقرأ أيضاً

The role played by Deligne-Beilinson cohomology in establishing the relation between Chern-Simons theory and link invariants in dimensions higher than three is investigated. Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons action, non trivial only in dimensions $4l+3$, whose parameter $k$ is quantized. The generalized Wilson $(2l+1)$-loops are observables of the theory and their charges are quantized. The Chern-Simons action is then used to compute invariants for links of $(2l+1)$-loops, first on closed $(4l+3)$-manifolds through a novel geometric computation, then on $mathbb{R}^{4l+3}$ through an unconventional field theoretic computation.
We discuss ensemble averages of two-dimensional conformal field theories associated with an arbitrary indefinite lattice with integral quadratic form $Q$. We provide evidence that the holographic dual after the ensemble average is the three-dimension al Abelian Chern-Simons theory with kinetic term determined by $Q$. The resulting partition function can be written as a modular form, expressed as a sum over the partition functions of Chern-Simons theories on lens spaces. For odd lattices, the dual bulk theory is a spin Chern-Simons theory, and we identify several novel phenomena in this case. We also discuss the holographic duality prior to averaging in terms of Maxwell-Chern-Simons theories.
78 - D. Senechal 1992
We argue that a simple Yukawa coupling between the $O(3)$ nonlinear $s$-model and charged Dirac fermions leads, after one-loop quantum corrections, to a Meissner effect, in the disordered phase of the nonlinear $s$-model.
We consider the $U(1)$ Chern-Simons gauge theory defined in a general closed oriented 3-manifold $M$; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The nonperturbati ve path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent $U(1)$ principal bundles over $M$; the different sectors of the configuration space are labelled by the elements of the first homology group of $M$ and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the extent of the nonperturbative contributions to the mean values. The functional integration is achieved in any 3-manifold $M$, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin-Turaev surgery invariants.
Here, we provide a simple Hubbard-like model of spin-$1/2$ fermions that gives rise to the SU(2) symmetric Thirring model that is equivalent, in the low-energy limit, to Yang-Mills-Chern-Simons model. First, we identify the regime that simulates the SU(2) Yang-Mills theory. Then, we suitably extend this model so that it gives rise to the SU(2) level $k$ Chern-Simons theory with $kgeq2$ that can support non-Abelian anyons. This is achieved by introducing multiple fermionic species and modifying the Thirring interactions, while preserving the SU(2) symmetry. Our proposal provides the means to theoretically and experimentally probe non-Abelian SU(2) level $k$ topological phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا