ﻻ يوجد ملخص باللغة العربية
We report a new approach for progressive and well-controlled downsizing of nanostructures below the 10 nm scale. Low energetic ion beam (Ar+) is used for gentle surface erosion, progressively shrinking the dimensions with ~ 1 nm accuracy. The method enables shaping of nanostructure geometry and polishing the surface. The process is clean room / high vacuum compatible being suitable for various applications. Apart from technological advantages, the method enables study of various size phenomena on the same sample between sessions of ion beam treatment.
In the majority of cases nanostructures prepared by focused electron beam induced deposition (FEBID) employing an organometallic precursor contain predominantly carbon-based ligand dissociation products. This is unfortunate with regard to using this
We report experiments on surface nanopatterning of Si targets which are irradiated with 2 keV Ar + ions impinging at near-glancing incidence, under concurrent co-deposition of Au impurities simultaneously extracted from a gold target by the same ion
Graphene is a unique material to study fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner the electrodynamic proper
Piezoresistance is the change in the electrical resistance, or more specifically the resistivity, of a solid induced by an applied mechanical stress. The origin of this effect in bulk, crystalline materials like Silicon, is principally a change in th
Investigations of the complex behavior of the magnetization of manganese arsenide thin films due to defects induced by irradiation of slow heavy ions are presented. In addition to the thermal hysteresis suppression already highlighted in M. Trassinel