ترغب بنشر مسار تعليمي؟ اضغط هنا

Ion-beam nanopatterning of silicon surfaces under co-deposition of non-silicide-forming impurities

58   0   0.0 ( 0 )
 نشر من قبل Rodolfo Cuerno
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report experiments on surface nanopatterning of Si targets which are irradiated with 2 keV Ar + ions impinging at near-glancing incidence, under concurrent co-deposition of Au impurities simultaneously extracted from a gold target by the same ion beam. Previous recent experiments by a number of groups suggest that silicide formation is a prerequisite for pattern formation in the presence of metallic impurities. In spite of the fact that Au is known not to form stable compounds with the Si atoms, ripples nonetheless emerge in our experiments with nanometric wavelengths and small amplitudes, and with an orientation that changes with distance to the Au source. We provide results of sample analysis through Auger electron and energy-dispersive X-ray spectroscopies for their space-resolved chemical composition, and through atomic force, scanning transmission electron, and high-resolution transmission microscopies for their morphological properties. We discuss these findings in the light of current continuum models for this class of systems. The composition of and the dynamics within the near-surface amorphized layer that ensues is expected to play a relevant role to account for the unexpected formation of these surface structures.



قيم البحث

اقرأ أيضاً

In the majority of cases nanostructures prepared by focused electron beam induced deposition (FEBID) employing an organometallic precursor contain predominantly carbon-based ligand dissociation products. This is unfortunate with regard to using this high-resolution direct-write approach for the preparation of nanostructures for various fields, such as mesoscopic physics, micromagnetism, electronic correlations, spin-dependent transport and numerous applications. Here we present an in-situ cleaning approach to obtain pure Co-FEBID nanostructures. The purification procedure lies in the exposure of heated samples to a H$_2$ atmosphere in conjunction with the irradiation by low-energy electrons. The key finding is that the combination of annealing at $300^circ$C, H$_2$ exposure and electron irradiation leads to compact, carbon- and oxygen free Co layers down to a thickness of about 20,nm starting from as-deposited Co-FEBID structures. In addition to this, in temperature-dependent electrical resistance measurements on post-processed samples we find a typical metallic behavior. In low-temperature magneto-resistance and Hall effect measurements we observe ferromagnetic behavior.
Superconducting nanowires can be fabricated by decomposition of an organometallic gas using a focused beam of Ga ions. However, physical damage and unintentional doping often results from the exposure to the ion beam, motivating the search for a mean s to achieve similar structures with a beam of electrons instead of ions. This has so far remained an experimental challenge. We report the fabrication of superconducting tungsten nanowires by electron-beam-induced-deposition, with critical temperature of 2.0 K and critical magnetic field of 3.7 T, and compare them with superconducting wires made with ions. This work opens up new possibilities for the realization of nanoscale superconducting devices, without the requirement of an ion beam column.
We report a new approach for progressive and well-controlled downsizing of nanostructures below the 10 nm scale. Low energetic ion beam (Ar+) is used for gentle surface erosion, progressively shrinking the dimensions with ~ 1 nm accuracy. The method enables shaping of nanostructure geometry and polishing the surface. The process is clean room / high vacuum compatible being suitable for various applications. Apart from technological advantages, the method enables study of various size phenomena on the same sample between sessions of ion beam treatment.
We theoretically investigate structural relaxation and activated diffusion of glass-forming liquids at different pressures using both the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory and molecular dynamics (MD) simulation. An ext ernal pressure restricts local motions of a single molecule within its cage and triggers the slowing down of cooperative mobility. While the ECNLE theory and simulation generally predict a monotonic increase of the glass transition temperature and dynamic fragility with pressure, the simulation indicates a decrease of fragility as pressure above 1000 bar. The structural relaxation time is found to be linearly coupled with the inverse diffusion constant. Remarkably, this coupling is independent of compression. Theoretical calculations agree quantitatively well with simulations and are also consistent with prior works.
Novel categories of electronic devices and quantum materials are obtained by pipelining the unitary evolution of electron quantum states as described by Schroedingers equation with non-unitary processes that interrupt the coherent propagation of elec trons. These devices and materials reside in the fascinating transition regime between quantum mechanics and classical physics. The devices are designed such that a nonreciprocal unitary state evolution is achieved by means of a broken inversion symmetry, for example as induced at material interfaces. This coherent state evolution is interrupted by individual inelastic scattering events caused by defects coupled to an environment. Two-terminal non-unitary quantum devices, for example, feature nonreciprocal conductance in linear response. Thus, they are exemptions to Onsagers reciprocal relation, and they challenge the second law of thermodynamics. Implementing the device function into the unit cells of materials or meta-materials yields novel functionalities in 2D and 3D materials, at interfaces, and in heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا