ﻻ يوجد ملخص باللغة العربية
Galaxy disks evolve through angular momentum transfers between sub-components, like gas, stars, or dark matter halos, through non axi-symmetric instabilities. The speed of this evolution is boosted in presence of a large fraction of cold and dissipative gas component. When the visible matter dominates over the whole disk, angular momentum is exchanged between gas and stars only. The gas is driven towards the center by bars, stalled transiently in resonance rings, and driven further by embedded bars, which it contributes to destroy. From a small-scale molecular torus, the gas can then inflow from viscous torques, dynamical friction, or m=1 perturbations. In the weakened bar phases, multiple-speed spiral patterns can develop and help the galaxy to accrete external gas flowing from cosmic filaments. The various phases of secular evolution are illustrated by numerical simulations.
We present a comprehensive series of $N$-body as well as $N$-body + SPH simulations to study the secular evolution of the structure of disk galaxies. Our simulations are organized in a hierarchy of increasing complexity, ranging from rigid-halo colli
We present our recent results on the properties of the outskirts of disk galaxies. In particular, we focus on spiral galaxies with stellar disk truncations in their radial surface brightness profiles. Using SDSS, UDF and GOODS data we show how the po
Using data from the Near-Infrared S0 Survey (NIRS0S) of nearby, early-type galaxies, we examine the distribution of bar strengths in S0 galaxies as compared to S0/a and Sa galaxies, and as compared to previously published bar strength data for Ohio S
Despite compelling evidence that stellar bars drive gas into the inner 1--2 kpc or circumnuclear (CN) region of galaxies, there are few large, high resolution studies of the CN molecular gas and star formation (SF). We study a sample of local barred
To further enhance our understanding on the formation and evolution of bars in lenticular (S0) galaxies, we are undertaking a detailed photometric and spectroscopic study on a sample of 22 objects. Here we report the results of a 2D structural analys