ﻻ يوجد ملخص باللغة العربية
We present a comprehensive series of $N$-body as well as $N$-body + SPH simulations to study the secular evolution of the structure of disk galaxies. Our simulations are organized in a hierarchy of increasing complexity, ranging from rigid-halo collisionless simulations to fully live simulations with gas and star formation. Comparisons between the different types of simulations allow us to isolate the role of various physical mechanisms. We focus on the evolution of systems expected in a LCDM universe. Our goal is to examine which structural properties of disk galaxies may result from secular evolution rather than from direct hierarchical assembly. In the vertical direction, we find that various mechanisms can lead to heating. The strongest heating occurs during the vertical buckling instability of a bar. Among the consequences of this instability is the formation of peanut-shaped bulges which produce clear kinematic signatures when observed face-on. We find that bars are robust structures that are not destroyed by buckling. They can be destroyed instead by a central mass concentration but we find that this mass needs to be a large fraction of the total mass of the disk. We then study the evolution of stellar surface density profiles showing how angular momentum redistribution leads to increasing central densities and disk scale lengths and to profile breaks at large radii. The breaks in these simulations are in excellent agreement with observed breaks, even when the evolution is purely collisionless. Disk scale-lengths increase even when the total disk angular momentum is conserved; thus mapping halo angular momenta to scale-lengths is non-trivial. [Abridged]
Galaxy disks evolve through angular momentum transfers between sub-components, like gas, stars, or dark matter halos, through non axi-symmetric instabilities. The speed of this evolution is boosted in presence of a large fraction of cold and dissipat
We present the results of two-component (disc+bar) and three-component (disc+bar+bulge) multiwavelength 2D photometric decompositions of barred galaxies in five SDSS bands ($ugriz$). This sample of $sim$3,500 nearby ($z<0.06$) galaxies with strong ba
Bulges are of different types, morphologies and kinematics, from pseudo-bulges, close to disk properties (Sersic index, rotation fraction, flatenning), to classical de Vaucouleurs bulges, close to elliptical galaxies. Secular evolution and bar develo
We consider the role of the dwarf planet Ceres on the secular dynamics of the asteroid main belt. Specifically, we examine the post impact evolution of asteroid families due to the interaction of their members with the linear nodal secular resonance
The orbital eccentricity of a single planet around a component of a stellar binary system with a sufficiently large mutual inclination angle is known to oscillate on a secular timescale through the Kozai mechanism. We have investigated the effects of