ترغب بنشر مسار تعليمي؟ اضغط هنا

Outskirts of spiral galaxies: result of a secular evolution process?

109   0   0.0 ( 0 )
 نشر من قبل Enrico Maria Corsini
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Bakos




اسأل ChatGPT حول البحث

We present our recent results on the properties of the outskirts of disk galaxies. In particular, we focus on spiral galaxies with stellar disk truncations in their radial surface brightness profiles. Using SDSS, UDF and GOODS data we show how the position of the break (i.e., a direct estimator of the size of the stellar disk) evolves with time since z~1. Our findings agree with an evolution on the radial position of the break by a factor of 1.3+/-0.1 in the last 8 Gyr for galaxies with similar stellar masses. We also present radial color gradients and how they evolve with time. At all redshift we find a radial inside-out bluing reaching a minimum at the position of the break radius, this minimum is followed by a reddening outwards. Our results constrain several galaxy disk formation models and favour a scenario where stars are formed inside the break radius and are relocated in the outskirts of galaxies through secular processes.



قيم البحث

اقرأ أيضاً

We quantify the evolution of the spiral, S0 and elliptical fractions in galaxy clusters as a function of cluster velocity dispersion ($sigma$) and X-ray luminosity ($L_X$) using a new database of 72 nearby clusters from the WIde-Field Nearby Galaxy-c luster Survey (WINGS) combined with literature data at $z=0.5-1.2$. Most WINGS clusters have $sigma$ between 500 and 1100 $rm km s^{-1}$, and $L_X$ between 0.2 and $5 times 10^{44} rm erg/s$. The S0 fraction in clusters is known to increase with time at the expense of the spiral population. We find that the spiral and S0 fractions have evolved more strongly in lower $sigma$, less massive clusters, while we confirm that the proportion of ellipticals has remained unchanged. Our results demonstrate that morphological evolution since $z=1$ is not confined to massive clusters, but is actually more pronounced in low mass clusters, and therefore must originate either from secular (intrinsic) evolution and/or from environmental mechanisms that act preferentially in low-mass environments, or both in low- and high-mass systems. We also find that the evolution of the spiral fraction perfectly mirrors the evolution of the fraction of star-forming galaxies. Interestingly, at low-z the spiral fraction anticorrelates with $L_X$. Conversely, no correlation is observed with $sigma$. Given that both $sigma$ and $L_X$ are tracers of the cluster mass, these results pose a challenge for current scenarios of morphological evolution in clusters.
162 - F. Combes 2008
Galaxy disks evolve through angular momentum transfers between sub-components, like gas, stars, or dark matter halos, through non axi-symmetric instabilities. The speed of this evolution is boosted in presence of a large fraction of cold and dissipat ive gas component. When the visible matter dominates over the whole disk, angular momentum is exchanged between gas and stars only. The gas is driven towards the center by bars, stalled transiently in resonance rings, and driven further by embedded bars, which it contributes to destroy. From a small-scale molecular torus, the gas can then inflow from viscous torques, dynamical friction, or m=1 perturbations. In the weakened bar phases, multiple-speed spiral patterns can develop and help the galaxy to accrete external gas flowing from cosmic filaments. The various phases of secular evolution are illustrated by numerical simulations.
One of the scenarios for the formation of grand-design spiral arms in disky galaxies involves their interactions with a satellite or another galaxy. Here we consider another possibility, where the perturbation is instead due to the potential of a gal axy cluster. Using $N$-body simulations we investigate the formation and evolution of spiral arms in a Milky Way-like galaxy orbiting a Virgo-like cluster. The galaxy is placed on a few orbits of different size but similar eccentricity and its evolution is followed for 10 Gyr. The tidally induced, two-armed, approximately logarithmic spiral structure forms on each of them during the pericenter passages. The spiral arms dissipate and wind up with time, to be triggered again at the next pericenter passage. We confirm this transient and recurrent nature of the arms by analyzing the time evolution of the pitch angle and the arm strength. We find that the strongest arms are formed on the tightest orbit, however they wind up rather quickly and are disturbed by another pericenter passage. The arms on the most extended orbit, which we analyze in more detail, wind up slowly and survive for the longest time. Measurements of the pattern speed of the arms indicate that they are kinematic density waves. We attempt a comparison with observations by selecting grand-design spiral galaxies in the Virgo cluster. Among those, we find nine examples bearing no signs of recent interactions or the presence of companions. For three of them we present close structural analogues among our simulated spiral galaxies.
69 - B. S. Koribalski 2016
The outskirts of galaxies - especially the very extended HI disks of galaxies - are strongly affected by their local environment. I highlight the giant 2X-HI disks of nearby galaxies (M 83, NGC 3621, and NGC 1512), studied as part of the Local Volume HI Survey (LVHIS), their kinematics and relation to XUV disks, signatures of tidal interactions and accretion events, the MHI - DHI relation as well as the formation of tidal dwarf galaxies. - Using multi-wavelength data, I create 3D visualisations of the gas and stars in galaxies, with the shape of their warped disks obtained through kinematic modelling of their HI velocity fields.
149 - Bodo Ziegler Vienna 2014
We investigate the evolution of the Tully-Fisher relation out to z=1 with 137 emission-line galaxies in the field that display a regular rotation curve. They follow a linear trend with lookback time being on average brighter by 1.1Bmag and 60% smalle r at z=1. For a subsample of 48 objects with very regular gas kinematics and stellar structure we derive a TF scatter of 1.15mag, which is two times larger than local samples exhibit. This is probably due to modest variations in their star formation history and chemical enrichment. In another study of 96 members of Abell 901/902 at z=0.17 and 86 field galaxies with similar redshifts we find a difference in the TFR of 0.42mag in the B-band but no significant difference in stellar mass. Comparing specifically red spirals with blue ones in the cluster, the former are fainter on average by 0.35Bmag and have 15% lower stellar masses. This is probably due to star formation quenching caused by ram-pressure in the cluster environment. Evidence for this scenario comes from strong distortions of the gas disk of red spirals that have at the same time a very regular stellar disk structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا