ﻻ يوجد ملخص باللغة العربية
For a cuspidal automorphic representation Pi of GL(4,A), H. Kim proved that the exterior square transfer wedge^2Pi is an isobaric automorphic representation of GL(6,A). In this paper we characterize those representations Pi for which wedge^2Pi is cuspidal.
We establish Langlands functoriality for the generic spectrum of GSp(4) and describe its transfer on GL(4). We apply this to prove results toward the generalized Ramanujan conjecture for generic representations of GSp(4).
In [Ar13], Arthur classifies the automorphic discrete spectrum of symplectic groups up to global Arthur packets, based on the theory of endoscopy. It is an interesting and basic question to ask: which global Arthur packets contain no cuspidal automor
Studying the analytic properties of the partial Langlands $L$-function via Rankin-Selberg method has been proved to be successful in various cases. Yet in few cases is the local theory studied at the archimedean places, which causes a tremendous gap
If $L/K$ is a finite Galois extension of local fields, we say that the valuation criterion $VC(L/K)$ holds if there is an integer $d$ such that every element $x in L$ with valuation $d$ generates a normal basis for $L/K$. Answering a question of Byot
Let $p$ be a prime number and $K$ a finite extension of $mathbb{Q}_p$. We state conjectures on the smooth representations of $mathrm{GL}_n(K)$ that occur in spaces of mod $p$ automorphic forms (for compact unitary groups). In particular, when $K$ is