ترغب بنشر مسار تعليمي؟ اضغط هنا

Generic transfer from GSp(4) to GL(4)

99   0   0.0 ( 0 )
 نشر من قبل Mahdi Asgari
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English
 تأليف Mahdi Asgari




اسأل ChatGPT حول البحث

We establish Langlands functoriality for the generic spectrum of GSp(4) and describe its transfer on GL(4). We apply this to prove results toward the generalized Ramanujan conjecture for generic representations of GSp(4).



قيم البحث

اقرأ أيضاً

176 - Mahdi Asgari , Ralf Schmidt 2007
We explicitly compute the adjoint L-function of those L-packets of representations of the group GSp(4) over a p-adic field of characteristic zero that contain non-supercuspidal representations. As an application we verify a conjecture of Gross-Prasad and Rallis in this case. The conjecture states that the adjoint L-function has a pole at s=1 if and only if the L-packet contains a generic representation.
166 - Mahdi Asgari , A. Raghuram 2007
For a cuspidal automorphic representation Pi of GL(4,A), H. Kim proved that the exterior square transfer wedge^2Pi is an isobaric automorphic representation of GL(6,A). In this paper we characterize those representations Pi for which wedge^2Pi is cuspidal.
83 - Mahdi Asgari 2004
We prove Langlands functoriality for the generic spectrum of general spin groups (both odd and even). Contrary to other recent instances of functoriality, our resulting automorphic representations on the general linear group will not be self-dual. To gether with cases of classical groups, this completes the list of cases of split reductive groups whose L-groups have classical derived groups. The important transfer from GSp(4) to GL(4) follows from our result as a special case.
103 - Yiwen Ding 2018
Let $L$ be a finite extension of $mathbb{Q}_p$, and $rho_L$ be an $n$-dimensional semi-stable non crystalline $p$-adic representation of $mathrm{Gal}_L$ with full monodromy rank. Via a study of Breuils (simple) $mathcal{L}$-invariants, we attach to $ rho_L$ a locally $mathbb{Q}_p$-analytic representation $Pi(rho_L)$ of $mathrm{GL}_n(L)$, which carries the exact information of the Fontaine-Mazur simple $mathcal{L}$-invariants of $rho_L$. When $rho_L$ comes from an automorphic representation of $G(mathbb{A}_{F^+})$ (for a unitary group $G$ over a totally real filed $F^+$ which is compact at infinite places and $mathrm{GL}_n$ at $p$-adic places), we prove under mild hypothesis that $Pi(rho_L)$ is a subrerpresentation of the associated Hecke-isotypic subspaces of the Banach spaces of $p$-adic automorphic forms on $G(mathbb{A}_{F^+})$. In other words, we prove the equality of Breuils simple $mathcal{L}$-invariants and Fontaine-Mazur simple $mathcal{L}$-invariants.
173 - Yiwen Ding 2019
We prove automorphy lifting results for certain essentially conjugate self-dual $p$-adic Galois representations $rho$ over CM imaginary fields $F$, which satisfy in particular that $p$ splits in $F$, and that the restriction of $rho$ on any decomposi tion group above $p$ is reducible with all the Jordan-Holder factors of dimension at most $2$. We also show some results on Breuils locally analytic socle conjecture in certain non-trianguline case. The main results are obtained by establishing an $R=mathbb{T}$-type result over the $mathrm{GL}_2(mathbb{Q}_p)$-ordinary families considered by Breuil-Ding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا