ﻻ يوجد ملخص باللغة العربية
In [Ar13], Arthur classifies the automorphic discrete spectrum of symplectic groups up to global Arthur packets, based on the theory of endoscopy. It is an interesting and basic question to ask: which global Arthur packets contain no cuspidal automorphic representations? The investigation on this question can be regarded as a further development of the topics originated from the classical theory of singular automorphic forms. The results obtained yield a better understanding of global Arthur packets and of the structure of local unramified components of the cuspidal spectrum, and hence are closely related to the generalized Ramanujan problem as posted by Sarnak in [Sar05].
We prove a conjecture of the first-named author ([J14]) on the upper bound Fourier coefficients of automorphic forms in Arthur packets of split classical groups over any number field.
Let $G$ be a group and $H$ be a subgroup of $G$. The classical branching rule (or symmetry breaking) asks: For an irreducible representation $pi$ of $G$, determine the occurrence of an irreducible representation $sigma$ of $H$ in the restriction of $
For a cuspidal automorphic representation Pi of GL(4,A), H. Kim proved that the exterior square transfer wedge^2Pi is an isobaric automorphic representation of GL(6,A). In this paper we characterize those representations Pi for which wedge^2Pi is cuspidal.
We study the existence of symplectic resolutions of quotient singularities V/G where V is a symplectic vector space and G acts symplectically. Namely, we classify the symplectically irreducible and imprimitive groups, excluding those of the form $K r
This paper begins the project of defining Arthur packets of all unipotent representations for the $p$-adic exceptional group $G_2$. Here we treat the most interesting case by defining and computing Arthur packets with component group $S_3$. We also s