ﻻ يوجد ملخص باللغة العربية
The antiferromagnetic Heisenberg model on an anisotropic kagome lattice may be a good minimal model for real magnetic systems as well as a limit from which the isotropic case can be better understood. We therefore study the nearest-neighbor Heisenberg antiferromagnet on an anisotropic kagome lattice in a magnetic field. Such a system should be well described by weakly interacting spin chains, and we motivate a general form for the interaction by symmetry considerations and by perturbatively projecting out the inter-chain spins. In the spin 1/2 case, we find that the system exhibits a quantum phase transition from a ferrimagnetic ordered state to an XY ordered state as the field is increased. Finally, we discuss the appearance of magnetization plateaux in the ferrimagnetic phase.
In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies [Hiroi et al.,2001]. It has been suggested that the magnetic properties of this material are described by a spin-1/2 Hei
We present numerical evidence for the crystallization of magnons below the saturation field at non-zero temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can be traced back to the existence of indepen
We study the quantum phase diagram of the spin-$1/2$ Heisenberg model on the kagome lattice with first-, second-, and third-neighbor interactions $J_1$, $J_2$, and $J_3$ by means of density matrix renormalization group. For small $J_2$ and $J_3$, thi
We study the properties of the Heisenberg antiferromagnet with spatially anisotropic nearest-neighbour exchange couplings on the kagome net, i.e. with coupling J in one lattice direction and couplings J along the other two directions. For J/J > 1, th
The Heisenberg antiferromagnet on the Kagom{e} lattice is studied in the framework of Schwinger-boson mean-field theory. Two solutions with different symmetries are presented. One solution gives a conventional quantum state with $mathbf{q}=0$ order f