ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnon crystallization in the kagome lattice antiferromagnet

122   0   0.0 ( 0 )
 نشر من قبل J. Schnack
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Schnack




اسأل ChatGPT حول البحث

We present numerical evidence for the crystallization of magnons below the saturation field at non-zero temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can be traced back to the existence of independent localized magnons or equivalently flat-band multi-magnon states. We present a loop-gas description of these localized magnons and a phase diagram of this transition, thus providing information for which magnetic fields and temperatures magnon crystallization can be observed experimentally. The emergence of a finite-temperature continuous transition to a magnon-crystal is expected to be generic for spin models in dimension $D>1$ where flat-band multi-magnon ground states break translational symmetry.

قيم البحث

اقرأ أيضاً

The kagome lattice is a fertile platform to explore topological excitations with both Fermi-Dirac and Bose-Einstein statistics. While relativistic Dirac Fermions and flat-bands have been discovered in the electronic structure of kagome metals, the sp in excitations have received less attention. Here we report inelastic neutron scattering studies of the prototypical kagome magnetic metal FeSn. The spectra display well-defined spin waves extending up to 120 meV. Above this energy, the spin waves become progressively broadened, reflecting interactions with the Stoner continuum. Using linear spin wave theory, we determine an effective spin Hamiltonian that reproduces the measured dispersion. This analysis indicates that the Dirac magnon at the K-point remarkably occurs on the brink of a region where well-defined spin waves become unobservable. Our results emphasize the influential role of itinerant carriers on the topological spin excitations of metallic kagome magnets.
The antiferromagnetic Heisenberg model on an anisotropic kagome lattice may be a good minimal model for real magnetic systems as well as a limit from which the isotropic case can be better understood. We therefore study the nearest-neighbor Heisenber g antiferromagnet on an anisotropic kagome lattice in a magnetic field. Such a system should be well described by weakly interacting spin chains, and we motivate a general form for the interaction by symmetry considerations and by perturbatively projecting out the inter-chain spins. In the spin 1/2 case, we find that the system exhibits a quantum phase transition from a ferrimagnetic ordered state to an XY ordered state as the field is increased. Finally, we discuss the appearance of magnetization plateaux in the ferrimagnetic phase.
64 - R. Okuma , D. Nakamura , T. Okubo 2019
Search for a new quantum state of matter emerging in a crystal is one of recent trends in condensed matter physics. For magnetic materials, geometrical frustration and high magnetic field are two key ingredients to realize it: a conventional magnetic order is possibly destroyed by competing interactions (frustration) and is replaced by an exotic state that is characterized in terms of quasiparticles, that are magnons, and the magnetic field can control the density and chemical potential of the magnons. Here we show that a synthetic copper mineral, Cd-kapellasite, comprising a kagome lattice made of corner-sharing triangles of Cu2+ ions carrying spin-1/2 exhibits an unprecedented series of fractional magnetization plateaux in ultrahigh magnetic fields up to 160 T, which may be interpreted as crystallizations of emergent magnons localized on the hexagon of the kagome lattice. Our observation reveals a novel type of particle physics realized in a highly frustrated magnet.
71 - S. A. Owerre 2018
A common feature of topological insulators is that they are characterized by topologically invariant quantity such as the Chern number and the $mathbb{Z}_2$ index. This quantity distinguishes a nontrivial topological system from a trivial one. A topo logical phase transition may occur when there are two topologically distinct phases, and it is usually defined by a gap closing point where the topologically invariant quantity is ill-defined. In this paper, we show that the magnon bands in the strained (distorted) kagome-lattice ferromagnets realize an example of a topological magnon phase transition in the realistic parameter regime of the system. When spin-orbit coupling (SOC) is neglected (i.e. no Dzyaloshinskii-Moriya interaction), we show that all three magnon branches are dispersive with no flat band, and there exists a critical point where tilted Dirac and semi-Dirac point coexist in the magnon spectra. The critical point separates two gapless magnon phases as opposed to the usual phase transition. Upon the inclusion of SOC, we realize a topological magnon phase transition point at the critical strain $delta_c=frac{1}{2}big[ 1-(D/J)^2big]$, where $D$ and $J$ denote the perturbative SOC and the Heisenberg spin exchange interaction respectively. It separates two distinct topological magnon phases with different Chern numbers for $delta<delta_c$ and for $delta>delta_c$. The associated anomalous thermal Hall conductivity develops an abrupt change at $delta_c$, due to the divergence of the Berry curvature in momentum space. The proposed topological magnon phase transition is experimentally feasible by applying external perturbations such as uniaxial strain or pressure.
We performed a comprehensive electron spin resonance, magnetization and heat capacity study on the field-induced magnetic phase transitions in the kagome antiferromagnet $alpha-Cu_3Mg(OH)_6Br_2$. With the successful preparation of single crystals, we mapped out the magnetic phase diagrams under the $c$-axis and $ab$-plane directional magnetic fields $B$. For $B|c$, the three-dimensional (3D) magnon Bose-Einstein condensation (BEC) is evidenced by the power law scaling of the transition temperature, $T_cpropto (B_c-B)^{2/3}$. For $B|ab$, the transition from the canted antiferromagetic (CAFM) state to the fully polarized (FP) state is a crossover rather than phase transition, and the characteristic temperature has a significant deviation from the 3D BEC scaling. The different behaviors of the field-induced magnetic transitions for $B|c$ and $B|ab$ could result from the Dzyaloshinkii-Moriya (DM) interaction with the DM vector along the $c$-axis, which preserves the $c$-axis directional spin rotation symmetry and breaks the spin rotation symmetry when $B|ab$. The 3D magnon BEC scaling for $B|c$ is immune to the off-stoichiometric disorder in our sample $alpha-Cu_{3.26}Mg_{0.74}(OH)_6Br_2$. Our findings have the potential to shed light on the investigations of the magnetic anisotropy and disorder effects on the field-induced magnon BEC in the quantum antiferromagnet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا