ترغب بنشر مسار تعليمي؟ اضغط هنا

Global Phase Diagram of Competing Ordered and Quantum Spin Liquid Phases on the Kagome Lattice

125   0   0.0 ( 0 )
 نشر من قبل Shou-Shu Gong
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the quantum phase diagram of the spin-$1/2$ Heisenberg model on the kagome lattice with first-, second-, and third-neighbor interactions $J_1$, $J_2$, and $J_3$ by means of density matrix renormalization group. For small $J_2$ and $J_3$, this model sustains a time-reversal invariant quantum spin liquid phase. With increasing $J_2$ and $J_3$, we find in addition a $q=(0,0)$ N{e}el phase, a chiral spin liquid phase, a valence-bond crystal phase, and a complex non-coplanar magnetically ordered state with spins forming the vertices of a cuboctahedron known as a cuboc1 phase. Both the chiral spin liquid and cuboc1 phase break time reversal symmetry in the sense of spontaneous scalar spin chirality. We show that the chiralities in the chiral spin liquid and cuboc1 are distinct, and that these two states are separated by a strong first order phase transition. The transitions from the chiral spin liquid to both the $q=(0,0)$ phase and to time-reversal symmetric spin liquid, however, are consistent with continuous quantum phase transitions.

قيم البحث

اقرأ أيضاً

The properties of ground state of spin-$frac{1}{2}$ kagome antiferromagnetic Heisenberg (KAFH) model have attracted considerable interest in the past few decades, and recent numerical simulations reported a spin liquid phase. The nature of the spin l iquid phase remains unclear. For instance, the interplay between symmetries and $Z_2$ topological order leads to different types of $Z_2$ spin liquid phases. In this paper, we develop a numerical simulation method based on symmetric projected entangled-pair states (PEPS), which is generally applicable to strongly correlated model systems in two spatial dimensions. We then apply this method to study the nature of the ground state of the KAFH model. Our results are consistent with that the ground state is a $U(1)$ Dirac spin liquid rather than a $Z_2$ spin liquid.
120 - Marc D. Schulz 2017
The $mathbb{Z}_2$ topological phase in the quantum dimer model on the Kagome-lattice is a candidate for the description of the low-energy physics of the anti-ferromagnetic Heisenberg model on the same lattice. We study the extend of the topological p hase by interpolating between the exactly solvable parent Hamiltonian of the topological phase and an effective low-energy description of the Heisenberg model in terms of a quantum-dimer Hamiltonian. Therefore, we perform a perturbative treatment of the low-energy excitations in the topological phase including free and interacting quasi-particles. We find a phase transition out of the topological phase far from the Heisenberg point. The resulting phase is characterized by a spontaneously broken rotational symmetry and a unit cell involving six sites.
71 - M. Jeong , F. Bert , P. Mendels 2011
We report 17O NMR measurements in the S=1/2 Cu2+ kagome antiferromagnet Herbertsmithite ZnCu3(OH)6Cl2 down to 45mK in magnetic fields ranging from 2T to 12T. While Herbertsmithite displays a gapless spin-liquid behavior in zero field, we uncover an i nstability toward a spin-solid phase at sub-kelvin temperature induced by an applied magnetic field. The latter phase shows largely suppressed moments $lesssim 0.1muB$ and gapped excitations. The H-T phase diagram suggests the existence of a quantum critical point at the small but finite magnetic field mu0 Hc=1.55(25)T. We discuss this finding in light of the perturbative Dzyaloshinskii-Moriya interaction which was theoretically proposed to sustain a quantum critical regime for the quantum kagome Heisenberg antiferromagnet model.
We present thermodynamic and neutron data on Ni_3V_2O_8, a spin-1 system on a kagome staircase. The extreme degeneracy of the kagome antiferromagnet is lifted to produce two incommensurate phases at finite T - one amplitude modulated, the other helic al - plus a commensurate canted antiferromagnet for T ->0. The H-T phase diagram is described by a model of competing first and second neighbor interactions with smaller anisotropic terms. Ni_3V_2O_8 thus provides an elegant example of order from sub leading interactions in a highly frustrated system
Magnetic skyrmion textures are realized mainly in non-centrosymmetric, e.g. chiral or polar, magnets. Extending the field to centrosymmetric bulk materials is a rewarding challenge, where the released helicity / vorticity degree of freedom and higher skyrmion density result in intriguing new properties and enhanced functionality. We report here on the experimental observation of a skyrmion lattice (SkL) phase with large topological Hall effect and an incommensurate helical pitch as small as 2.8 nm in metallic Gd3Ru4Al12, which materializes a breathing kagome lattice of Gadolinium moments. The magnetic structure of several ordered phases, including the SkL, is determined by resonant x-ray diffraction as well as small angle neutron scattering. The SkL and helical phases are also observed directly using Lorentz transmission electron microscopy. Among several competing phases, the SkL is promoted over a low-temperature transverse conical state by thermal fluctuations in an intermediate range of magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا