ترغب بنشر مسار تعليمي؟ اضغط هنا

Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365

169   0   0.0 ( 0 )
 نشر من قبل Remco C.E. van den Bosch
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a flexible and efficient method to construct triaxial dynamical models of galaxies with a central black hole, using Schwarzschilds orbital superposition approach. Our method is general and can deal with realistic luminosity distributions, which project to surface brightness distributions that may show position angle twists and ellipticity variations. The models are fit to measurements of the full line-of-sight velocity distribution (wherever available). We verify that our method is able to reproduce theoretical predictions of a three-integral triaxial Abel model. In a companion paper (van de Ven, de Zeeuw & van den Bosch), we demonstrate that the method recovers the phase-space distribution function. We apply our method to two-dimensional observations of the E3 galaxy NGC 4365, obtained with the integral-field spectrograph SAURON, and study its internal structure, showing that the observed kinematically decoupled core is not physically distinct from the main body and the inner region is close to oblate axisymmetric.


قيم البحث

اقرأ أيضاً

We report the first wide-field mapping of the kinematics and stellar populations in the E3 galaxy NGC 4365. The velocity maps extend previous long-slit work. They show two independent kinematic subsystems: the central 300 x 700 pc rotates about the p rojected minor axis, and the main body of the galaxy, 3 x 4 kpc, rotates almost at right angles to this. The line-strength maps show that the metallicity of the stellar population decreases from a central value greater than solar, to one-half solar at a radius of 2 kpc. The decoupled core and main body of the galaxy have the same luminosity-weighted age, of ~14 Gyr, and the same elevated magnesium-to-iron ratio. The two kinematically distinct components have thus shared a common star formation history. We infer that the galaxy underwent a sequence of mergers associated with dissipative star formation that ended >12 Gyr ago. The misalignment between the photometric and kinematic axes of the main body is unambiguous evidence of triaxiality. The similarity of the stellar populations in the two components suggests that the observed kinematic structure has not changed substantially in 12 Gyr.
An investigation on the possible dynamical models of the core galaxy NGC 1399 is performed. Because early-type galaxies are likely to be formed through merging events, remnant rings are considered in the modeling process. A numerical survey over thre e parameters is employed to obtain the best-fit models that are completely consistent with observations. It is found that the inner slope of dark matter profile is a cuspy one for this core galaxy. The existence of remnant rings in best-fit models indicates a merging history. The remnant ring explains the flatten surface brightness, and thus could be the physical counterpart of the core structure of NGC 1399.
Studies of the kinematics of NGC 1407 have revealed complex kinematical structure, consisting of the outer galaxy, an embedded disc within a radius of $sim60$ arcsec, and a kinematically decoupled core (KDC) with a radius of less than 30arcsec. Howev er, the size of the KDC and the amplitude of the kinematic misalignment it induces have not yet been determined. In this paper, we explore the properties of the KDC using observations from the MUSE Integral Field Spectrograph to map out the kinematics in the central arcminute of NGC 1407. Velocity and kinemetry maps of the galaxy reveal a twist of $sim$148 degree in the central $10$ arcseconds of the galaxy, and the higher-order moments of the kinematics reveal that within the same region, this slowly-rotating galaxy displays no net rotation. Analysis of the stellar populations across the galaxy found no evidence of younger stellar populations in the region of the KDC, instead finding uniform age and super-solar $alpha$-enhancement across the galaxy, and a smoothly decreasing metallicity gradient with radius. We therefore conclude that NGC 1407 contains a triaxial, kiloparsec-scale KDC with distinct kinematics relative to the rest of the galaxy, and which is likely to have formed through either a major merger or a series of minor mergers early in the lifetime of the galaxy. With a radius of $sim$5 arcseconds or $sim0.6$ kpc, NGC 1407 contains the smallest KDC mapped by MUSE to date in terms of both its physical and angular size.
416 - F. Feroz 2011
Weak gravitational lensing studies of galaxy clusters often assume a spherical cluster model to simplify the analysis, but some recent studies have suggested this simplifying assumption may result in large biases in estimated cluster masses and conce ntration values, since clusters are expected to exhibit triaxiality. Several such analyses have, however, quoted expressions for the spatial derivatives of the lensing potential in triaxial models, which are open to misinterpretation. In this paper, we give a clear description of weak lensing by triaxial NFW galaxy clusters and also present an efficient and robust method to model these clusters and obtain parameter estimates. By considering four highly triaxial NFW galaxy clusters, we re-examine the impact of simplifying spherical assumptions and found that while the concentration estimates are largely unbiased except in one of our traixial NFW simulated clusters, for which the concentration is only slightly biased, the masses are significantly biased, by up to 40%, for all the clusters we analysed. Moreover, we find that such assumptions can lead to the erroneous conclusion that some substructure is present in the galaxy clusters or, even worse, that multiple galaxy clusters are present in the field. Our cluster fitting method also allows one to answer the question of whether a given cluster exhibits triaxiality or a simple spherical model is good enough.
The galaxy NGC 4418 contains one of the most compact obscured nuclei within a luminous infrared galaxy (LIRG) in the nearby Universe. This nucleus contains a rich molecular gas environment and an unusually high ratio of infrared to radio luminosity ( q-factor). The compact nucleus is powered by either a compact starburst or an active galactic nucleus (AGN). The aim of this study is to constrain the nature of the nuclear region (starburst or AGN) within NGC 4418 via very-high-resolution radio imaging. Archival data from radio observations using the EVN and MERLIN interferometers are imaged. Sizes and flux densities are obtained by fitting Gaussian intensity distributions to the image. The average spectral index of the compact radio emission is estimated from measurements at 1.4 GHz and 5.0 GHz. The nuclear structure of NGC 4418 visible with EVN and MERLIN consists of eight compact (<49 mas i.e. <8 pc) features spread within a region of 250 mas, i.e. 41 pc. We derive an inverted spectral index $alphage0.7$ ($S_ upropto u^{alpha}$) for the compact radio emission. Brightness temperatures $>10^{4.8}$ K indicate that these compact features cannot be HII-regions. The complex morphology and inverted spectrum of the eight detected compact features is evidence against the hypothesis that an AGN alone is powering the nucleus of NGC 4418. The compact features could be super star clusters (SSCs) with intense star formation, and their associated free-free absorption could then naturally explain both their inverted radio spectrum and the low radio to IR ratio of the nucleus. The required star formation area density is extreme, however, and close to the limit of what can be observed in a well-mixed thermal/non-thermal plasma produced by star-formation, and is also close to the limit of what can be physically sustained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا