ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak lensing by triaxial galaxy clusters

444   0   0.0 ( 0 )
 نشر من قبل Farhan Feroz
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Feroz




اسأل ChatGPT حول البحث

Weak gravitational lensing studies of galaxy clusters often assume a spherical cluster model to simplify the analysis, but some recent studies have suggested this simplifying assumption may result in large biases in estimated cluster masses and concentration values, since clusters are expected to exhibit triaxiality. Several such analyses have, however, quoted expressions for the spatial derivatives of the lensing potential in triaxial models, which are open to misinterpretation. In this paper, we give a clear description of weak lensing by triaxial NFW galaxy clusters and also present an efficient and robust method to model these clusters and obtain parameter estimates. By considering four highly triaxial NFW galaxy clusters, we re-examine the impact of simplifying spherical assumptions and found that while the concentration estimates are largely unbiased except in one of our traixial NFW simulated clusters, for which the concentration is only slightly biased, the masses are significantly biased, by up to 40%, for all the clusters we analysed. Moreover, we find that such assumptions can lead to the erroneous conclusion that some substructure is present in the galaxy clusters or, even worse, that multiple galaxy clusters are present in the field. Our cluster fitting method also allows one to answer the question of whether a given cluster exhibits triaxiality or a simple spherical model is good enough.



قيم البحث

اقرأ أيضاً

144 - Nobuhiro Okabe 2009
(Abridged) We use Subaru data to conduct a detailed weak-lensing study of the dark matter distribution in a sample of 30 X-ray luminous galaxy clusters at 0.15<z<0.3. A weak-lensing signal is detected at high statistical significance in each cluster, the total detection S/N ranging from 5 to 13. In this paper we concentrate on fitting spherical models to the tangential distortion profiles of the clusters. When the models are fitted to the clusters individually, we are unable to discriminate statistically between SIS and NFW models. However when the tangential distortion profiles of the individual clusters are combined, and models fitted to the stacked profile, the SIS model is rejected at 6- and 11-sigma, respectively, for low- and high-mass bins. We also use the individual cluster NFW model fits to investigate the relationship between cluster mass (M_vir) and concentration (c_vir), finding an anti-correlation of c_vir and M_vir. The best-fit c_vir-M_vir relation is: c_vir(M_vir) propto M_vir^{-alpha} with alpha=0.41+/-0.19 -- i.e. a non-zero slope is detected at 2sigma significance. We then investigate the optimal radius within which to measure cluster mass, finding that the typical fractional errors are improved to sigma(M_Delta)/M_Delta ~ 0.1-0.2 for cluster masses at higher over-densities Delta=500-2000, from 0.2-0.3 for the virial over-density (~110). Further comparisons between mass measurements based on spherical model fitting and the model-independent aperture mass method reveal that the 2D aperture mass enclosed within a cylinder of a given aperture radius is systematically greater than the 3D spherical mass obtained from NFW model fitting: M_2D/M_3D= 1.34 and 1.40 for Delta=500 and 110, respectively. The amplitude of this effect agrees well with that predicted by integrating the NFW model along the line-of-sight.
In light of the tension in cosmological constraints reported by the Planck team between their SZ-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-le nsing mass measurements from the Weighing the Giants (WtG) project. For the 22 clusters in common between the Planck cosmology sample and WtG, we find an overall mass ratio of $left< M_{Planck}/M_{rm WtG} right> = 0.688 pm 0.072$. Extending the sample to clusters not used in the Planck cosmology analysis yields a consistent value of $left< M_{Planck}/M_{rm WtG} right> = 0.698 pm 0.062$ from 38 clusters in common. Identifying the weak-lensing masses as proxies for the true cluster mass (on average), these ratios are $sim 1.6sigma$ lower than the default mass bias of 0.8 assumed in the Planck cluster analysis. Adopting the WtG weak-lensing-based mass calibration would substantially reduce the tension found between the Planck cluster count cosmology results and those from CMB temperature anisotropies, thereby dispensing of the need for new physics such as uncomfortably large neutrino masses (in the context of the measured Planck temperature anisotropies and other data). We also find modest evidence (at 95 per cent confidence) for a mass dependence of the calibration ratio and discuss its potential origin in light of systematic uncertainties in the temperature calibration of the X-ray measurements used to calibrate the Planck cluster masses. Our results exemplify the critical role that robust absolute mass calibration plays in cluster cosmology, and the invaluable role of accurate weak-lensing mass measurements in this regard.
We present the mass calibration for galaxy clusters detected with the AMICO code in KiDS DR3 data. The cluster sample comprises $sim$ 7000 objects and covers the redshift range 0.1 < $z$ < 0.6. We perform a weak lensing stacked analysis by binning th e clusters according to redshift and two different mass proxies provided by AMICO, namely the amplitude $A$ (measure of galaxy abundance through an optimal filter) and the richness $lambda^*$ (sum of membership probabilities in a consistent radial and magnitude range across redshift). For each bin, we model the data as a truncated NFW profile plus a 2-halo term, taking into account uncertainties related to concentration and miscentring. From the retrieved estimates of the mean halo masses, we construct the $A$-$M_{200}$ and the $lambda^*$-$M_{200}$ relations. The relations extend over more than one order of magnitude in mass, down to $M_{200} sim 2 (5) times 10^{13} M_odot/h$ at $z$ = 0.2 (0.5), with small evolution in redshift. The logarithmic slope is $sim 2.0$ for the $A$-mass relation, and $sim 1.7$ for the $lambda^*$-mass relation, consistent with previous estimations on mock catalogues and coherent with the different nature of the two observables.
102 - Keiichi Umetsu 2020
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of top ics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster--galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration--mass relation, the splashback radius, and implications from extensive mass calibration efforts for cluster cosmology.
Cosmic voids are an important probe of large-scale structure that can constrain cosmological parameters and test cosmological models. We present a new paradigm for void studies: void detection in weak lensing convergence maps. This approach identifie s objects that relate directly to our theoretical understanding of voids as underdensities in the total matter field and presents several advantages compared to the customary method of finding voids in the galaxy distribution. We exemplify this approach by identifying voids using the weak lensing peaks as tracers of the large-scale structure. We find self-similarity in the void abundance across a range of peak signal-to-noise selection thresholds. The voids obtained via this approach give a tangential shear signal up to $sim40$ times larger than voids identified in the galaxy distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا