ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying Dynamical Models of the Core Galaxy NGC 1399 with Merging Remnants

217   0   0.0 ( 0 )
 نشر من قبل Ing-Guey Jiang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An investigation on the possible dynamical models of the core galaxy NGC 1399 is performed. Because early-type galaxies are likely to be formed through merging events, remnant rings are considered in the modeling process. A numerical survey over three parameters is employed to obtain the best-fit models that are completely consistent with observations. It is found that the inner slope of dark matter profile is a cuspy one for this core galaxy. The existence of remnant rings in best-fit models indicates a merging history. The remnant ring explains the flatten surface brightness, and thus could be the physical counterpart of the core structure of NGC 1399.

قيم البحث

اقرأ أيضاً

We present optical VLT/MUSE integral field spectroscopy data of the merging galaxy NGC 1487. We use fitting techniques to study the ionized gas emission of this merger and its main morphological and kinematical properties. We measured flat and someti mes inverted oxygen abundance gradients in the subsystems composing NGC 1487, explained by metal mixing processes common in merging galaxies. We also measured widespread star-forming bursts, indicating that photoionisation by stars is the primary ionization source of the galaxy. The kinematic map revealed a rotating pattern in the gas in the northern tail of the system, suggesting that the galaxy may be in the process of rebuilding a disc. The gas located in the central region has larger velocity dispersion ($sigmaapprox 50$ km s$^{-1}$) than the remaining regions, indicating kinematic heating, possibly owing to the ongoing interaction. Similar trends were, however, not observed in the stellar velocity-dispersion map, indicating that the galaxy has not yet achieved equilibrium, and the nebular and stellar components are still kinematically decoupled. Based on all our measurements and findings, and specially on the mass estimates, metallicity gradients and velocity fields of the system, we propose that NGC 1487 is the result of an ongoing merger event involving smallish dwarf galaxies within a group, in a pre-merger phase, resulting in a relic with mass and physical parameters similar to a dwarf galaxy. Thus, we may be witnessing the formation of a dwarf galaxy by merging of smaller clumps at z=0.
We report sensitive [ion{C}{1}]~$^3P_1$--$^3P_0$ and $^{12}$CO~$J$=4--3 observations of the nearby merging galaxy NGC 6052 using the Morita (Atacama Compact) Array of ALMA. We detect $^{12}$CO~$J$=4--3 toward the northern part of NGC 6052, but [ion{C }{1}]~$^3P_1$--$^3P_0$ is not detected with a [ion{C}{1}]~$^3P_1$--$^3P_0$ to $^{12}$CO~$J$=4--3 line luminosity ratio of$~lesssim0.07$. According to models of photodissociation regions, the unusual weakness of [ion{C}{1}]~$^3P_1$--$^3P_0$ relative to $^{12}$CO~$J$=4--3 can be explained if the interstellar medium has a hydrogen density larger than $10^5,{rm cm}^{-3}$, conditions that might arise naturally in the ongoing merging process in NGC 6052. Its [ion{C}{1}]~$^3P_1$--$^3P_0$ emission is also weaker than expected given the molecular gas mass inferred from previous measurements of $^{12}$CO~$J$=1--0 and $^{12}$CO~$J$=2--1. This suggests that [ion{C}{1}]~$^3P_1$--$^3P_0$ may not be a reliable tracer of molecular gas mass in this galaxy. NGC 6052 is a unique laboratory to investigate how the merger process impacts the molecular gas distribution.
The galaxy cluster Abell 3266 is one of the X-ray brightest in the sky and is a well-known merging system. Using the ability of the eROSITA telescope onboard SRG (Spectrum Rontgen Gamma) to observe a wide field with a single pointing, we analyse a ne w observation of the cluster out to a radius of R_200. The X-ray images highlight substructures present in the cluster, including the northeast-southwest merger seen in previous ASCA, Chandra and XMM-Newton data, a merging group towards the northwest and filamentary structures between the core and one or more groups towards the west. We compute spatially-resolved spectroscopic maps of the thermodynamic properties of the cluster, including the metallicity. The merging subclusters are seen as low entropy material within the cluster. The filamentary structures could be the rims of a powerful AGN outburst, or most likely material stripped from the western group(s) as they passed through the cluster core. Seen in two directions is a pressure jump at a radius of 1.1 Mpc consistent with a shock with a Mach number of ~1.5-1.7. The eROSITA data confirm that the cluster is not a simple merging system, but is made up of several subclusters which are merging or will shortly merge. For the first time we find a radio halo associated with the system detected in GLEAM data. We compute a hydrostatic mass from the eROSITA data, finding good agreement with a previous XMM-Newton result. With this pointing we detect several extended sources, where we find for seven of them secure associations between z=0.36-1.0; i.e., background galaxy groups and clusters, highlighting the power of eROSITA to find such systems.
We report ~2 resolution Atacama Large Millimeter/submillimeter Array observations of the HCN(1-0), HCO+(1-0), CO(1-0), CO(2-1), and CO(3-2) lines towards the nearby merging double-nucleus galaxy NGC 3256. We find that the high density gas outflow tra ced in HCN(1-0) and HCO+(1-0) emission is co-located with the diffuse molecular outflow emanating from the southern nucleus, where a low-luminosity active galactic nucleus (AGN) is believed to be the dominant source of the far-infrared luminosity. On the other hand, the same lines were undetected in the outflow region associated with the northern nucleus, whose primary heating source is likely related to starburst activity without obvious signs of AGN. Both HCO+(1-0)/CO(1-0) line ratio (i.e. dense gas fraction) and the CO(3-2)/CO(1-0) line ratio are larger in the southern outflow (0.20$pm$0.04 and 1.3$pm$0.2, respectively) than in the southern nucleus (0.08$pm$0.01, 0.7$pm$0.1, respectively). By investigating these line ratios for each velocity component in the southern outflow, we find that the dense gas fraction increases and the CO(3-2)/CO(1-0) line ratio decreases towards the largest velocity offset. This suggests the existence of a two-phase (diffuse and clumpy) outflow. One possible scenario to produce such a two-phase outflow is an interaction between the jet and the interstellar medium, which possibly triggers shocks and/or star formation associated with the outflow.
Using SDSS-DR7, we construct a sample of 42382 galaxies with redshifts in the region of 20 galaxy clusters. Using two successive iterative methods, the adaptive kernel method and the spherical infall model, we obtained 3396 galaxies as members belong ing to the studied sample. The 2D projected map for the distribution of the clusters members is introduced using the 2D adaptive kernel method to get the clusters centers. The cumulative surface number density profile for each cluster is fitted well with the generalized King model. The core radii of the clusters sample are found to vary from 0.18 Mpc $mbox{h}^{-1}$ (A1459) to 0.47 Mpc $mbox{h}^{-1}$ (A2670) with mean value of 0.295 Mpc $mbox{h}^{-1}$. The infall velocity profile is determined using two different models, Yahil approximation and Praton model. Yahil approximation is matched with the distribution of galaxies only in the outskirts (infall regions) of many clusters of the sample, while it is not matched with the distribution within the inner core of the clusters. Both Yahil approximation and Praton model are matched together in the infall region for about 9 clusters in the sample but they are completely unmatched for the clusters characterized by high central density. For these cluster, Yahil approximation is not matched with the distribution of galaxies, while Praton model can describe well the infall pattern of such clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا