ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient 2-designs from bases exist

58   0   0.0 ( 0 )
 نشر من قبل David Gross
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that in a complex d-dimensional vector space, one can find O(d) bases whose elements form a 2-design. Such vector sets generalize the notion of a maximal collection of mutually unbiased bases (MUBs). MUBs have manifold applications in quantum information theory (e.g. in state tomography, cloning, or cryptography) -- however it is suspected that maximal sets exist only in prime-power dimensions. Our construction offers an efficient alternative for general dimensions. The findings are based on a framework recently established in [A. Roy and A. Scott, J. Math. Phys. 48, 072110 (2007)], which reduces the construction of such bases to the combinatorial problem of finding certain highly nonlinear functions between abelian groups.


قيم البحث

اقرأ أيضاً

124 - Shelby Kimmel , Yi-Kai Liu 2015
We consider a variant of the phase retrieval problem, where vectors are replaced by unitary matrices, i.e., the unknown signal is a unitary matrix U, and the measurements consist of squared inner products |Tr(C*U)|^2 with unitary matrices C that are chosen by the observer. This problem has applications to quantum process tomography, when the unknown process is a unitary operation. We show that PhaseLift, a convex programming algorithm for phase retrieval, can be adapted to this matrix setting, using measurements that are sampled from unitary 4- and 2-designs. In the case of unitary 4-design measurements, we show that PhaseLift can reconstruct all unitary matrices, using a near-optimal number of measurements. This extends previous work on PhaseLift using spherical 4-designs. In the case of unitary 2-design measurements, we show that PhaseLift still works pretty well on average: it recovers almost all signals, up to a constant additive error, using a near-optimal number of measurements. These 2-design measurements are convenient for quantum process tomography, as they can be implemented via randomized benchmarking techniques. This is the first positive result on PhaseLift using 2-designs.
A unitary 2-design can be viewed as a quantum analogue of a 2-universal hash function: it is indistinguishable from a truly random unitary by any procedure that queries it twice. We show that exact unitary 2-designs on n qubits can be implemented by quantum circuits consisting of ~O(n) elementary gates in logarithmic depth. This is essentially a quadratic improvement in size (and in width times depth) over all previous implementations that are exact or approximate (for sufficiently strong approximations).
We present an experimentally feasible and efficient method for detecting entangled states with measurements that extend naturally to a tomographically complete set. Our detection criterion is based on measurements from subsets of a quantum 2-design, e.g., mutually unbiased bases or symmetric informationally complete states, and has several advantages over standard entanglement witnesses. First, as more detectors in the measurement are applied, there is a higher chance of witnessing a larger set of entangled states, in such a way that the measurement setting converges to a complete setup for quantum state tomography. Secondly, our method is twice as effective as standard witnesses in the sense that both upper and lower bounds can be derived. Thirdly, the scheme can be readily applied to measurement-device-independent scenarios.
131 - Darshan D. Thaker 2006
The assumption of maximum parallelism support for the successful realization of scalable quantum computers has led to homogeneous, ``sea-of-qubits architectures. The resulting architectures overcome the primary challenges of reliability and scalabili ty at the cost of physically unacceptable system area. We find that by exploiting the natural serialization at both the application and the physical microarchitecture level of a quantum computer, we can reduce the area requirement while improving performance. In particular we present a scalable quantum architecture design that employs specialization of the system into memory and computational regions, each individually optimized to match hardware support to the available parallelism. Through careful application and system analysis, we find that our new architecture can yield up to a factor of thirteen savings in area due to specialization. In addition, by providing a memory hierarchy design for quantum computers, we can increase time performance by a factor of eight. This result brings us closer to the realization of a quantum processor that can solve meaningful problems.
Quantum chaos in many-body systems provides a bridge between statistical and quantum physics with strong predictive power. This framework is valuable for analyzing properties of complex quantum systems such as energy spectra and the dynamics of therm alization. While contemporary methods in quantum chaos often rely on random ensembles of quantum states and Hamiltonians, this is not reflective of most real-world systems. In this paper, we introduce a new perspective: across a wide range of examples, a single non-random quantum state is shown to encode universal and highly random quantum state ensembles. We characterize these ensembles using the notion of quantum state $k$-designs from quantum information theory and investigate their universality using a combination of analytic and numerical techniques. In particular, we establish that $k$-designs arise naturally from generic states as well as individual states associated with strongly interacting, time-independent Hamiltonian dynamics. Our results offer a new approach for studying quantum chaos and provide a practical method for sampling approximately uniformly random states; the latter has wide-ranging applications in quantum information science from tomography to benchmarking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا