ﻻ يوجد ملخص باللغة العربية
A unitary 2-design can be viewed as a quantum analogue of a 2-universal hash function: it is indistinguishable from a truly random unitary by any procedure that queries it twice. We show that exact unitary 2-designs on n qubits can be implemented by quantum circuits consisting of ~O(n) elementary gates in logarithmic depth. This is essentially a quadratic improvement in size (and in width times depth) over all previous implementations that are exact or approximate (for sufficiently strong approximations).
Unitary $t$-designs are `good finite subsets of the unitary group $U(d)$ that approximate the whole unitary group $U(d)$ well. Unitary $t$-designs have been applied in randomized benchmarking, tomography, quantum cryptography and many other areas of
We consider a variant of the phase retrieval problem, where vectors are replaced by unitary matrices, i.e., the unknown signal is a unitary matrix U, and the measurements consist of squared inner products |Tr(C*U)|^2 with unitary matrices C that are
The purpose of this paper is to give explicit constructions of unitary $t$-designs in the unitary group $U(d)$ for all $t$ and $d$. It seems that the explicit constructions were so far known only for very special cases. Here explicit construction mea
A unitary $t$-design is a powerful tool in quantum information science and fundamental physics. Despite its usefulness, only approximate implementations were known for general $t$. In this paper, we provide for the first time quantum circuits that ge
An $(n,r,s)$-system is an $r$-uniform hypergraph on $n$ vertices such that every pair of edges has an intersection of size less than $s$. Using probabilistic arguments, R{o}dl and v{S}iv{n}ajov{a} showed that for all fixed integers $r> s ge 2$, there