ﻻ يوجد ملخص باللغة العربية
We present an experimentally feasible and efficient method for detecting entangled states with measurements that extend naturally to a tomographically complete set. Our detection criterion is based on measurements from subsets of a quantum 2-design, e.g., mutually unbiased bases or symmetric informationally complete states, and has several advantages over standard entanglement witnesses. First, as more detectors in the measurement are applied, there is a higher chance of witnessing a larger set of entangled states, in such a way that the measurement setting converges to a complete setup for quantum state tomography. Secondly, our method is twice as effective as standard witnesses in the sense that both upper and lower bounds can be derived. Thirdly, the scheme can be readily applied to measurement-device-independent scenarios.
We investigate quantum state tomography (QST) for pure states and quantum process tomography (QPT) for unitary channels via $adaptive$ measurements. For a quantum system with a $d$-dimensional Hilbert space, we first propose an adaptive protocol wher
One of the fundamental problem to explore the potential and advantage of quantum technology is the char acterization and quantification of the quantum correlations, especially entanglement. In [Phys. Rev. A 94, 032129 (2016)], the author proposed the
With nowadays steadily growing quantum processors, it is required to develop new quantum tomography tools that are tailored for high-dimensional systems. In this work, we describe such a computational tool, based on recent ideas from non-convex optim
In this work, we establish a general theory of phase transitions and quantum entanglement in the equilibrium state at arbitrary temperatures. First, we derived a set of universal functional relations between the matrix elements of two-body reduced de
We propose and experimentally demonstrate a quantum state tomography protocol that generalizes the Wallentowitz-Vogel-Banaszek-Wodkiewicz point-by-point Wigner function reconstruction. The full density operator of an arbitrary quantum state is effici