ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy dependence of nuclear effects in hadron-nucleus collisions

145   0   0.0 ( 0 )
 نشر من قبل Konrad Tywoniuk
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The energy dependence of light and heavy particle production in hadron-nucleus collisions is discussed. Whereas the production mechanism at lower energies can be understood in the Glauber rescattering picture, experimental data at RHIC indicate that particles are mostly produced in coherent processes. The importance of energy-momentum conservation is shown to be crucial at forward rapidities for the whole energy range. We also discuss the behaviour of $alpha (x_F)$ with energy for light particles and $J/psi$. Finally, we make predictions for the future LHC experiment.



قيم البحث

اقرأ أيضاً

Two important initial-state nuclear effects in hadron-nucleus collisions are considered. The ratios of inclusive differential cross sections for Drell-Yan dimuon production are calculated. The calculated results are compared to the E866 data. It is s hown that consideration of multiple soft rescatterings of incident quarks in nuclei and initial-state quark energy loss effects allow to get a good agreement between the calculated results and the experimental data.
The propagation of the heavy quarks produced in relativistic nucleus-nucleus collisions at RHIC and LHC is studied within the framework of Langevin dynamics in the background of an expanding deconfined medium described by ideal and viscous hydrodynam ics. The transport coefficients entering into the relativistic Langevin equation are evaluated by matching the hard-thermal-loop result for soft collisions with a perturbative QCD calculation for hard scatterings. The heavy-quark spectra thus obtained are employed to compute the differential cross sections, the nuclear modification factors R_AA and the elliptic flow coefficients v_2 of electrons from heavy-flavour decay.
Parton distribution functions (PDFs) describe the structure of hadrons as composed of quarks and gluons. They are needed to make predictions for short-distance processes in high-energy collisions and are determined by fitting to cross section data. W e review definitions of the PDFs and their relations to high-energy cross sections. We focus on the PDFs in protons, but also discuss PDFs in nuclei. We review in some detail the standard statistical treatment needed to fit the PDFs to data using the Hessian method. We discuss tests that can be used to critically examine whether the assumptions are indeed valid. We also present some ideas of what one can do in the case that the tests indicate that the assumptions fail.
175 - M. Alvioli , M. Strikman 2013
Color fluctuations in hadron-hadron collisions are responsible for the presence of inelastic diffraction and lead to distinctive differences between the Gribov picture of high energy scattering and the low energy Glauber picture. We find that color f luctuations give a larger contribution to the fluctuations of the number of wounded nucleons than the fluctuations of the number of nucleons at a given impact parameter. The two contributions for the impact parameter averaged fluctuations are comparable. As a result, standard procedures for selecting peripheral (central) collisions lead to selection of configurations in the projectile which interact with smaller (larger) than average strength. We suggest that studies of pA collisions with a hard trigger may allow to observe effects of color fluctuations.
The hypothesis of limiting fragmentation (LF) or it is called otherwise recently, as extended longitudinal scaling, is an interesting phenomena in high energy multiparticle production process. This paper discusses about different regions of phase spa ce and their importance in hadron production, giving special emphasis on the fragmentation region. Although it was conjectured as a universal phenomenon in high energy physics, with the advent of higher center-of-mass energies, it has become prudent to analyse and understand the validity of such hypothesis in view of the increasing inelastic nucleon-nucleon cross-section ($sigma_{rm in}$). In this work, we revisit the phenomenon of limiting fragmentation for nucleus-nucleus (A+A) collisions in the pseudorapidity distribution of charged particles at various energies. We use energy dependent $sigma_{rm in}$ to transform the charged particle pseudorapidity distributions ($dN^{rm AA}_{ch}/deta$) into differential cross-section per unit pseudorapidity ($dsigma^{rm AA}/deta$) of charged particles and study the phenomenon of LF. We find that in $dsigma^{rm AA}/deta$ LF seems to be violated at LHC energies while considering the energy dependent $sigma_{rm in}$. We also perform a similar study using A Multi-Phase Transport (AMPT) Model with string melting scenario and also find that LF is violated at LHC energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا