ترغب بنشر مسار تعليمي؟ اضغط هنا

Limiting fragmentation in high-energy nuclear collisions at the CERN Large Hadron Collider

96   0   0.0 ( 0 )
 نشر من قبل Raghunath Sahoo
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The hypothesis of limiting fragmentation (LF) or it is called otherwise recently, as extended longitudinal scaling, is an interesting phenomena in high energy multiparticle production process. This paper discusses about different regions of phase space and their importance in hadron production, giving special emphasis on the fragmentation region. Although it was conjectured as a universal phenomenon in high energy physics, with the advent of higher center-of-mass energies, it has become prudent to analyse and understand the validity of such hypothesis in view of the increasing inelastic nucleon-nucleon cross-section ($sigma_{rm in}$). In this work, we revisit the phenomenon of limiting fragmentation for nucleus-nucleus (A+A) collisions in the pseudorapidity distribution of charged particles at various energies. We use energy dependent $sigma_{rm in}$ to transform the charged particle pseudorapidity distributions ($dN^{rm AA}_{ch}/deta$) into differential cross-section per unit pseudorapidity ($dsigma^{rm AA}/deta$) of charged particles and study the phenomenon of LF. We find that in $dsigma^{rm AA}/deta$ LF seems to be violated at LHC energies while considering the energy dependent $sigma_{rm in}$. We also perform a similar study using A Multi-Phase Transport (AMPT) Model with string melting scenario and also find that LF is violated at LHC energies.



قيم البحث

اقرأ أيضاً

292 - V. Topor Pop 2013
Effects of strong longitudinal colour electric fields (SCF), shadowing, and quenching on the open prompt charm mesons (D$^0$, D$^+$, D$^{*+}$, D${_s}{^+}$) production in central Pb + Pb collisions at $sqrt{s_{rm NN}}$ = 2.76 TeV are investigated with in the framework of the {small HIJING/B=B v2.0} model. We compute the nuclear modification factor $R_{rm PbPb}^{rm D}$, and show that the above nuclear effects constitute important dynamical mechanisms in the description of experimental data. The strength of colour fields (as characterized by the string tension $kappa$), partonic energy loss and jet quenching process lead to a suppression factor consistent with recent published data. Predictions for future beauty mesons measurements have been included. Ratios of strange to non-strange prompt charm mesons in central Pb + Pb and minimum bias (MB) $ p + p$ collisions at 2.76 TeV are also discussed. Minimum bias $p + p$ collisions which constitute theoretical baseline in our calculations are studied at the centre of mass energies $sqrt{s}$ = 2.76 TeV and 7 TeV.
161 - V. Topor Pop 2010
We study the effect of strong longitudinal color fields (SCF) in p+p reactions up to Large Hadron Collider energies in the framework of the HIJING/BBbar v2.0 model that combines (collinear factorized) pQCD multiple minijet production with soft longit udinal string excitation and hadronization. The default vacuum string tension, kappa0 = 1 GeV/fm, is replaced by an effective power law energy dependent string tension, that increases monotonically with center-of-mass energy. The exponent 0.06 is found sufficient to reproduce well the energy dependence of multiparticle observables in RHIC, Tevatron, as well as recent LHC data. This exponent is found to be only half of that predicted by the Color Glass Saturation model, lambda(CGC)=0.115, where gluon fusion multiparticle production mechanisms are assumed. In HIJING/BBbar v2.0, the rapid growth of central-rapidity density with energy is due to the interplay of copious minijet production and increasing SCF contributions. The large (strange)baryon-to-meson ratios measured at Tevatron energies are well described. A significant enhancement of these ratios is predicted up to the highest LHC energy (14 TeV). The effect of JJbar loops and SCF on baryon-anti-baryon asymmetry and its relation to baryon number transport is also discussed.
Hadronic resonances, having very short lifetime, like $rm{K}^{*0}$, can act as useful probes to understand and estimate lifetime of hadronic phase in ultra-relativistic proton-proton, p--Pb and heavy-ion collisions. Resonances with relatively longer lifetime, like $phi$ meson, can serve as a tool to locate the QGP phase boundary. We estimate a lower limit of hadronic phase lifetime in Cu--Cu and Au--Au collisions at RHIC, and in pp, p--Pb and Pb--Pb collisions at different LHC collision energies. Also, we obtain the effective temperature of $phi$ meson using Boltzmann-Gibbs Blast-Wave function, which gives an insight to locate the QGP phase boundary. We observe that the hadronic phase lifetime strongly depends on final state charged-particle multiplicity, whereas the QGP phase and hence the QCD phase boundary shows a very weak multiplicity dependence. This suggests that the hadronisation from a QGP state starts at a similar temperature irrespective of charged-particle multiplicity, collision system and collision energy, while the endurance of hadronic phase is strongly dependent on final state charge-particle multiplicity, system size and collision energy.
85 - M. Alvioli 2016
We model effects of color fluctuations (CFs) in the light-cone photon wave function and for the first time make predictions for the distribution over the number of wounded nucleons $ u$ in the inelastic photon-nucleus scattering. We show that CFs lea d to a dramatic enhancement of this distribution at $ u=1$ and large $ u > 10$. We also study the implications of different scales and CFs in the photon wave function on the total transverse energy $Sigma E_T$ and other observables in inelastic $gamma A$ scattering with different triggers. Our predictions can be tested in proton-nucleus and nucleus-nucleus ultraperipheral collisions at the LHC and will help to map CFs, whose first indications have already been observed at the LHC.
We present a new calculation of the energy distribution of high-energy neutrinos from the decay of charm and bottom hadrons produced at the Large Hadron Collider (LHC). In the kinematical region of very forward rapidities, heavy-flavor production and decay is a source of tau neutrinos that leads to thousands of { charged-current} tau neutrino events in a 1 m long, 1 m radius lead neutrino detector at a distance of 480 m from the interaction region. In our computation, next-to-leading order QCD radiative corrections are accounted for in the production cross-sections. Non-perturbative intrinsic-$k_T$ effects are approximated by a simple phenomenological model introducing a Gaussian $k_T$-smearing of the parton distribution functions, which might also mimic perturbative effects due to multiple initial-state soft-gluon emissions. The transition from partonic to hadronic states is described by phenomenological fragmentation functions. To study the effect of various input parameters, theoretical predictions for $D_s^pm$ production are compared with LHCb data on double-differential cross-sections in transverse momentum and rapidity. The uncertainties related to the choice of the input parameter values, ultimately affecting the predictions of the tau neutrino event distributions, are discussed. We consider a 3+1 neutrino mixing scenario to illustrate the potential for a neutrino experiment to constrain the 3+1 parameter space using tau neutrinos and antineutrinos. We find large theoretical uncertainties in the predictions of the neutrino fluxes in the far-forward region. Untangling the effects of tau neutrino oscillations into sterile neutrinos and distinguishing a 3+1 scenario from the standard scenario with three active neutrino flavours, will be challenging due to the large theoretical uncertainties from QCD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا