ﻻ يوجد ملخص باللغة العربية
Parton distribution functions (PDFs) describe the structure of hadrons as composed of quarks and gluons. They are needed to make predictions for short-distance processes in high-energy collisions and are determined by fitting to cross section data. We review definitions of the PDFs and their relations to high-energy cross sections. We focus on the PDFs in protons, but also discuss PDFs in nuclei. We review in some detail the standard statistical treatment needed to fit the PDFs to data using the Hessian method. We discuss tests that can be used to critically examine whether the assumptions are indeed valid. We also present some ideas of what one can do in the case that the tests indicate that the assumptions fail.
It is shown that hadron abundances in high energy e+e-, pp and p{bar p} collisions, calculated by assuming that particles originate in hadron gas fireballs at thermal and partial chemical equilibrium, are in very good agreement with the data. The fre
We discuss the multiplicity distribution for highest accessible energies of $pp$- and $bar pp$- interactions from the point of view of the multiparton collisions. The inelastic cross sections for the single, $sigma_1$, and multiple (double and, presu
The hypothesis of limiting fragmentation (LF) or it is called otherwise recently, as extended longitudinal scaling, is an interesting phenomena in high energy multiparticle production process. This paper discusses about different regions of phase spa
A brief historical review is made of the hadron-hadron (hh) total cross section and hadron-nucleus absorption cross section measurements, made mainly at high energy proton synchrotrons. Then I shall discuss low p_tprocesses, including diffraction pro
In this article, we review some of the complexities of jet algorithms and of the resultant comparisons of data to theory. We review the extensive experience with jet measurements at the Tevatron, the extrapolation of this acquired wisdom to the LHC a