ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Relativistic Chapman-Enskog Solution of the Boltzmann Equation

114   0   0.0 ( 0 )
 نشر من قبل Alfredo Sandoval-Villalbazo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Chapman-Enskog method of solution of the relativistic Boltzmann equation is generalized in order to admit a time-derivative term associated to a thermodynamic force in its first order solution. Both existence and uniqueness of such a solution are proved based on the standard theory of integral equations. The mathematical implications of the generalization here introduced are thoroughly discussed regarding the nature of heat as chaotic energy transfer in the context of relativity theory.



قيم البحث

اقرأ أيضاً

We address the well-posedness of the Cauchy problem corresponding to the relativistic fluid equations, when coupled with the heat-flux constitutive relation arising within the relativistic Chapman-Enskog procedure. The resulting system of equations i s shown to be non hyperbolic, by considering general perturbations over the whole set of equations written with respect to a generic time direction. The obtained eigenvalues are not purely imaginary and their real part grows without bound as the wave-number increases. Unlike Eckarts theory, this instability is not present when the time direction is aligned with the fluids direction. However, since in general the fluid velocity is not surface-forming, the instability can only be avoided in the particular case where no rotation is present.
Extended theories are widely used in the literature to describe relativistic fluids. The motivation for this is mostly due to the causality issues allegedly present in the first order in the gradients theories. However, the decay of fluctuations in t he system is also at stake when first order theories that couple heat with acceleration are used. This paper shows that although the introduction of the Maxwell-Cattaneo equation in the description of a simple relativistic fluid formally eliminates the generic instabilities identified by Hiscock and Lindblom in 1985, the hypothesis on the order of magnitude of the corresponding relaxation term contradicts the basic ordering in Knudsens parameter present in the kinetic approach to hydrodynamics. It is shown that the time derivative, stabilizing term is of second order in such parameter and thus does not belong to the Navier-Stokes regime where the so-called instability arises.
We present an exact solution to the Boltzmann equation which describes a system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion for arbitrary shear viscosity to entropy density ratio. This new solution is constructe d by considering the conformal map between Minkowski space and the direct product of three dimensional de Sitter space with a line. The resulting solution respects SO(3)_q x SO(1,1) x Z_2 symmetry. We compare the exact kinetic solution with exact solutions of the corresponding macroscopic equations that were obtained from the kinetic theory in ideal and second-order viscous hydrodynamic approximations. The macroscopic solutions are obtained in de Sitter space and are subject to the same symmetries used to obtain the exact kinetic solution.
This work examines the idea of applying the Chapman-Enskog (CE) method for approximating the solution of the Boltzmann equation beyond the realm of physics, using an information theory approach. Equations describing the evolution of averages and thei r fluctuations in a generalized phase space are established up to first order in the Knudsen parameter, which is defined as the ratio of the time between interactions (mean free time) and a characteristic macroscopic time. Although the general equations here obtained may be applied in a wide range of disciplines, in this paper only a particular case related to the evolution of averages in speculative markets is examined.
The Generalized Uncertainty Principle and the related minimum length are normally considered in non-relativistic Quantum Mechanics. Extending it to relativistic theories is important for having a Lorentz invariant minimum length and for testing the m odified Heisenberg principle at high energies.In this paper, we formulate a relativistic Generalized Uncertainty Principle. We then use this to write the modified Klein-Gordon, Schrodinger and Dirac equations, and compute quantum gravity corrections to the relativistic hydrogen atom, particle in a box, and the linear harmonic oscillator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا