ﻻ يوجد ملخص باللغة العربية
We report on the transport of mixed quantum degenerate gases of bosonic 87Rb and fermionic 40K in a harmonic potential provided by a modified QUIC trap. The samples are transported over a distance of 6 mm to the geometric center of the anti-Helmholtz coils of the QUIC trap. This transport mechanism was implemented by a small modification of the QUIC trap and is free of losses and heating. It allows all experiments using QUIC traps to use the highly homogeneous magnetic fields that can be created in the center of a QUIC trap and improves the optical access to the atoms, e.g., for experiments with optical lattices. This mechanism may be cascaded to cover even larger distances for applications with quantum degenerate samples.
We demonstrate tuning of interactions between fermionic 40K and bosonic 87Rb atoms by Feshbach resonances and access the complete phase diagram of the harmonically trapped mixture from phase separation to collapse. On the attractive side of the reson
We report on the generation of a quantum degenerate Fermi-Fermi mixture of two different atomic species. The quantum degenerate mixture is realized employing sympathetic cooling of fermionic Li-6 and K-40 gases by an evaporatively cooled bosonic Rb-8
We create atom-molecule superpositions in a Bose-Fermi mixture of Rb-87 and K-40 atoms. The superpositions are generated by ramping an applied magnetic field near an interspecies Fano-Feshbach resonance to coherently couple atom and molecule states.
We have produced a macroscopic quantum system in which a Li-6 Fermi sea coexists with a large and stable Na-23 Bose-Einstein condensate. This was accomplished using inter-species sympathetic cooling of fermionic Li-6 in a thermal bath of bosonic Na-23.
We report on the attainment of a spin-polarized Fermi sea of 87-Sr in thermal contact with a Bose-Einstein condensate (BEC) of 84-Sr. Interisotope collisions thermalize the fermions with the bosons during evaporative cooling. A degeneracy of T/T_F=0.