ترغب بنشر مسار تعليمي؟ اضغط هنا

Double-degenerate Bose-Fermi mixture of strontium

85   0   0.0 ( 0 )
 نشر من قبل Florian Schreck
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the attainment of a spin-polarized Fermi sea of 87-Sr in thermal contact with a Bose-Einstein condensate (BEC) of 84-Sr. Interisotope collisions thermalize the fermions with the bosons during evaporative cooling. A degeneracy of T/T_F=0.30(5) is reached with 2x10^4 87-Sr atoms together with an almost pure 84-Sr BEC of 10^5 atoms.

قيم البحث

اقرأ أيضاً

One of the challenging goals in the studies of many-body physics with ultracold atoms is the creation of a topological $p_{x} + ip_{y}$ superfluid for identical fermions in two dimensions (2D). The expectations of reaching the critical temperature $T _c$ through p-wave Feshbach resonance in spin-polarized fermionic gases have soon faded away because on approaching the resonance, the system becomes unstable due to inelastic-collision processes. Here, we consider an alternative scenario in which a single-component degenerate gas of fermions in 2D is paired via phonon-mediated interactions provided by a 3D BEC background. Within the weak-coupling regime, we calculate the critical temperature $T_c$ for the fermionic pair formation, using Bethe-Salpeter formalism, and show that it is significantly boosted by higher-order diagramatic terms, such as phonon dressing and vertex corrections. We describe in detail an experimental scheme to implement our proposal, and show that the long-sought p-wave superfluid is at reach with state-of-the-art experiments.
We present the exact solution for the many-body wavefunction of a one-dimensional mixture of bosons and spin-polarized fermions with equal masses and infinitely strong repulsive interactions under external confinement. Such a model displays a large d egeneracy of the ground state. Using a generalized Bose-Fermi mapping we find the solution for the whole set of ground-state wavefunctions of the degenerate manifold and we characterize them according to group-symmetry considerations. We find that the density profile and the momentum distribution depends on the symmetry of the solution. By combining the wavefunctions of the degenerate manifold with suitable symmetry and guided by the strong-coupling form of the Bethe-Ansatz solution for the homogeneous system we propose an analytic expression for the many-body wavefunction of the inhomogeneous system which well describes the ground state at finite, large and equal interactions strengths, as validated by numerical simulations.
We investigate magnetoassociation of ultracold fermionic Feshbach molecules in a mixture of $^{40}$K and $^{87}$Rb atoms, where we can create as many as $7times 10^4$ $^{40}$K$^{87}$Rb molecules with a conversion efficiency as high as 45%. In the per turbative regime, we find that the conversion efficiency depends linearly on the density overlap of the two gases, with a slope that matches a parameter-free model that uses only the atom masses and the known Feshbach resonance parameters. In the saturated regime, we find that the maximum number of Feshbach molecules depends on the atoms phase-space density. At higher temperatures, our measurements agree with a phenomenological model that successfully describes the formation of bosonic molecules from either Bose or Fermi gases. However, for quantum degenerate atom gas mixtures, we measure significantly fewer molecules than this model predicts.
139 - Yuzhu Jiang , Ran Qi , Zhe-Yu Shi 2016
In this letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to different vortex co re structure of the Fermi superfluid in the BCS regime and in the BEC regime. In the former the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out at the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, the two sets of vortex lattices interact stronger in the BEC regime that yields the structure transition of vortex lattices. In view of recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in near future.
We analyse a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC cross-over. Using a quasiparticle random phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC re spectively, we show that the single particle and collective excitations of the Fermi gas give rise to an induced interaction between the bosons, which varies strongly with momentum and frequency. It diverges at the sound mode of the Fermi superfluid, resulting in a sharp avoided crossing feature and a corresponding sign change of the interaction energy shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, these prominent effects can be used to systematically probe the strongly interacting Fermi gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا