ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Atom-Molecule Oscillations in a Bose-Fermi Mixture

107   0   0.0 ( 0 )
 نشر من قبل Michele Olsen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We create atom-molecule superpositions in a Bose-Fermi mixture of Rb-87 and K-40 atoms. The superpositions are generated by ramping an applied magnetic field near an interspecies Fano-Feshbach resonance to coherently couple atom and molecule states. Rabi- and Ramsey-type experiments show oscillations in the molecule population that persist as long as 150 microseconds and have up to 50% contrast. The frequencies of these oscillations are magnetic-field dependent and consistent with the predicted molecule binding energy. This quantum superposition involves a molecule and a pair of free particles with different statistics (i.e. bosons and fermions), and furthers exploration of atom-molecule coherence in systems without a Bose-Einstein condensate.

قيم البحث

اقرأ أيضاً

We investigate magnetoassociation of ultracold fermionic Feshbach molecules in a mixture of $^{40}$K and $^{87}$Rb atoms, where we can create as many as $7times 10^4$ $^{40}$K$^{87}$Rb molecules with a conversion efficiency as high as 45%. In the per turbative regime, we find that the conversion efficiency depends linearly on the density overlap of the two gases, with a slope that matches a parameter-free model that uses only the atom masses and the known Feshbach resonance parameters. In the saturated regime, we find that the maximum number of Feshbach molecules depends on the atoms phase-space density. At higher temperatures, our measurements agree with a phenomenological model that successfully describes the formation of bosonic molecules from either Bose or Fermi gases. However, for quantum degenerate atom gas mixtures, we measure significantly fewer molecules than this model predicts.
We have created a dark quantum superposition state of a Rb Bose-Einstein condensate (BEC) and a degenerate gas of Rb$_2$ ground state molecules in a specific ro-vibrational state using two-color photoassociation. As a signature for the decoupling of this coherent atom-molecule gas from the light field we observe a striking suppression of photoassociation loss. In our experiment the maximal molecule population in the dark state is limited to about 100 Rb$_2$ molecules due to laser induced decay. The experimental findings can be well described by a simple three mode model.
119 - Giovanni Modugno 2007
We give an overview of recent experiments on an ultracold Fermi-Bose quantum gas where the interspecies interaction can be tuned via magnetic Feshbach resonances. We first describe the various steps that have led to the observation of Feshbach resona nces in the K-Rb system we investigate, and their accurate characterization. We then describe experiments in which Feshbach resonances are exploited to study interaction effects and to associate weakly bound KRb dimers.
We present a nonequilibrium kinetic theory describing atom-molecule population dynamics in a two-component Fermi gas with a Feshbach resonance. Key collision integrals emerge that govern the relaxation of the atom-molecule mixture to chemical and the rmal equilibrium. Our focus is on the pseudogap regime where molecules form above the superfluid transition temperature. In this regime, we formulate a simple model for the atom-molecule population dynamics. The model predicts the saturation of molecule formation that has been observed in recent experiments, and indicates that a dramatic enhancement of the atom-molecule conversion efficiency occurs at low temperatures.
We report on the generation of a quantum degenerate Fermi-Fermi mixture of two different atomic species. The quantum degenerate mixture is realized employing sympathetic cooling of fermionic Li-6 and K-40 gases by an evaporatively cooled bosonic Rb-8 7 gas. We describe the combination of trapping and cooling methods that proved crucial to successfully cool the mixture. In particular, we study the last part of the cooling process and show that the efficiency of sympathetic cooling of the Li-6 gas by Rb-87 is increased by the presence of K-40 through catalytic cooling. Due to the differing physical properties of the two components, the quantum degenerate Li-6 K-40 Fermi-Fermi mixture is an excellent candidate for a stable, heteronuclear system allowing to study several so far unexplored types of quantum matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا