ترغب بنشر مسار تعليمي؟ اضغط هنا

Singular point characterization in microscopic flows

185   0   0.0 ( 0 )
 نشر من قبل Dmitri Petrov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest an approach to microrheology based on optical traps in order to measure fluid fluxes around singular points of fluid flows. We experimentally demonstrate this technique, applying it to the characterization of controlled flows produced by a set of birefringent spheres spinning due to the transfer of light angular momentum. Unlike the previous techniques, this method is able to distinguish between a singular point in a complex flow and the absence of flow at all; furthermore it permits us to characterize the stability of the singular point.

قيم البحث

اقرأ أيضاً

Particulate flows have been largely studied under the simplifying assumptions of one-way coupling regime where the disperse phase do not react-back on the carrier fluid. In the context of turbulent flows, many non trivial phenomena such as small scal es particles clustering or preferential spatial accumulation have been explained and understood. A more complete view of multiphase flows can be gained calling into play two-way coupling effects, i.e. by accounting for the inter-phase momentum exchange between the carrier and the suspended phase, certainly relevant at increasing mass loading. In such regime, partially investigated in the past by the so-called Particle In Cell (PIC) method, much is still to be learned about the dynamics of the disperse phase and the ensuing alteration of the carrier flow. In this paper we present a new methodology rigorously designed to capture the inter-phase momentum exchange for particles smaller than the smallest hydrodynamical scale, e.g. the Kolmogorov scale in a turbulent flow. In fact, the momentum coupling mechanism exploits the unsteady Stokes flow around a small rigid sphere where the transient disturbance produced by each particle is evaluated in a closed form. The particles are described as lumped, point masses which would lead to the appearance of singularities. A rigorous regularization procedure is conceived to extract the physically relevant interactions between particles and fluid which avoids any ah hoc assumption. The approach is suited for high efficiency implementation on massively parallel machines since the transient disturbance produced by the particles is strongly localized in space around the actual particle position. As will be shown, hundred thousands particles can therefore be handled at an affordable computational cost as demonstrated by a preliminary application to a particle laden turbulent shear flow.
Collisional self-interactions occurring in protostellar jets give rise to strong shocks, the structure of which can be affected by radiative cooling within the flow. To study such colliding flows, we use the AstroBEAR AMR code to conduct hydrodynamic simulations in both one and three dimensions with a power law cooling function. The characteristic length and time scales for cooling are temperature dependent and thus may vary as shocked gas cools. When the cooling length decreases sufficiently rapidly the system becomes unstable to the radiative shock instability, which produces oscillations in the position of the shock front; these oscillations can be seen in both the one and three dimensional cases. Our simulations show no evidence of the density clumping characteristic of a thermal instability, even when the cooling function meets the expected criteria. In the three-dimensional case, the nonlinear thin shell instability (NTSI) is found to dominate when the cooling length is sufficiently small. When the flows are subjected to the radiative shock instability, oscillations in the size of the cooling region allow NTSI to occur at larger cooling lengths, though larger cooling lengths delay the onset of NTSI by increasing the oscillation period.
Surface roughness becomes relevant if typical length scales of the system are comparable to the scale of the variations as it is the case in microfluidic setups. Here, an apparent boundary slip is often detected which can have its origin in the assum ption of perfectly smooth boundaries. We investigate the problem by means of lattice Boltzmann (LB) simulations and introduce an ``effective no-slip plane at an intermediate position between peaks and valleys of the surface. Our simulations show good agreement with analytical results for sinusoidal boundaries, but can be extended to arbitrary geometries and experimentally obtained surface data. We find that the detected apparent slip is independent of the detailed boundary shape, but only given by the distribution of surface heights. Further, we show that the slip diverges as the amplitude of the roughness increases.
We present a collection of eight data sets, from state-of-the-art experiments and numerical simulations on turbulent velocity statistics along particle trajectories obtained in different flows with Reynolds numbers in the range $R_lambda in [120:740] $. Lagrangian structure functions from all data sets are found to collapse onto each other on a wide range of time lags, revealing a universal statistics, and calling for a unified theoretical description. Parisi-Frisch Multifractal theory, suitable extended to the dissipative scales and to the Lagrangian domain, is found to capture intermittency of velocity statistics over the whole three decades of temporal scales here investigated.
A three-dimensional nonlinear dynamo process is identified in rotating plane Couette flow in the Keplerian regime. It is analogous to the hydrodynamic self-sustaining process in non-rotating shear flows and relies on the magneto-rotational instabilit y of a toroidal magnetic field. Steady nonlinear solutions are computed numerically for a wide range of magnetic Reynolds numbers but are restricted to low Reynolds numbers. This process may be important to explain the sustenance of coherent fields and turbulent motions in Keplerian accretion disks, where all its basic ingredients are present.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا