ﻻ يوجد ملخص باللغة العربية
We present a collection of eight data sets, from state-of-the-art experiments and numerical simulations on turbulent velocity statistics along particle trajectories obtained in different flows with Reynolds numbers in the range $R_lambda in [120:740]$. Lagrangian structure functions from all data sets are found to collapse onto each other on a wide range of time lags, revealing a universal statistics, and calling for a unified theoretical description. Parisi-Frisch Multifractal theory, suitable extended to the dissipative scales and to the Lagrangian domain, is found to capture intermittency of velocity statistics over the whole three decades of temporal scales here investigated.
All previous experiments in open turbulent flows (e.g. downstream of grids, jet and atmospheric boundary layer) have produced quantitatively consistent values for the scaling exponents of velocity structure functions. The only measurement in closed t
In this Letter we suggest a simple and physically transparent analytical model of the pressure driven turbulent wall-bounded flows at high but finite Reynolds numbers Re. The model gives accurate qualitative description of the profiles of the mean-ve
A shear-improved Smagorinsky model is introduced based on recent results concerning shear effects in wall-bounded turbulence by Toschi et al. (2000). The Smagorinsky eddy-viscosity is modified subtracting the magnitude of the mean shear from the magn
We address the phenomenon of drag reduction by dilute polymeric additive to turbulent flows, using Direct Numerical Simulations (DNS) of the FENE-P model of viscoelastic flows. It had been amply demonstrated that these model equations reproduce the p
Particulate flows have been largely studied under the simplifying assumptions of one-way coupling regime where the disperse phase do not react-back on the carrier fluid. In the context of turbulent flows, many non trivial phenomena such as small scal