ﻻ يوجد ملخص باللغة العربية
Surface roughness becomes relevant if typical length scales of the system are comparable to the scale of the variations as it is the case in microfluidic setups. Here, an apparent boundary slip is often detected which can have its origin in the assumption of perfectly smooth boundaries. We investigate the problem by means of lattice Boltzmann (LB) simulations and introduce an ``effective no-slip plane at an intermediate position between peaks and valleys of the surface. Our simulations show good agreement with analytical results for sinusoidal boundaries, but can be extended to arbitrary geometries and experimentally obtained surface data. We find that the detected apparent slip is independent of the detailed boundary shape, but only given by the distribution of surface heights. Further, we show that the slip diverges as the amplitude of the roughness increases.
Hydrodynamic slip of a liquid at a solid surface represents a fundamental phenomenon in fluid dynamics that governs liquid transport at small scales. For polymeric liquids, de Gennes predicted that the Navier boundary condition together with the theo
Classical hydrodynamic models predict that infinite work is required to move a three-phase contact line, defined here as the line where a liquid/vapor interface intersects a solid surface. Assuming a slip boundary condition, in which the liquid slide
The shape of a microchannel during flow through it is instrumental to understanding the physics that govern various phenomena ranging from rheological measurements of fluids to separation of particles and cells. Two commonly used approaches for obtai
We report rheological measurements of a noncolloidal particle suspension in a Newtonian solvent at 40% solid volume fraction. An anomalous, frequency-dependent complex viscosity is found under oscillatory shear (OS) flow, whereas a constant dynamic v
Crumpled paper or drapery patterns are everyday examples of how elastic sheets can respond to external forcing. In this Letter, we study experimentally a novel sort of forcing. We consider a circular flexible plate clamped at its center and subject t