ﻻ يوجد ملخص باللغة العربية
We propose a novel mechanism for photogeneration of multiexcitons by single photons (carrier multiplication) in semiconductor nanocrystals. In this mechanism, the Coulomb interaction between two valence-band electrons involving their transfer to the conduction band creates a virtual biexciton from vacuum that is then converted into a real biexciton by photon absorption on an intraband optical transition. This mechanism is inactive in bulk semiconductors as momentum conservation suppresses intraband absorption. However, it becomes highly efficient in zero-dimensional nanocrystals and can provide a significant contribution to carrier multiplication in these materials.
We report a multiband transport study of bilayer graphene at high carrier densities. Employing a poly(ethylene)oxide-CsClO$_4$ solid polymer electrolyte gate we demonstrate the filling of the high energy subbands in bilayer graphene samples at carrie
Although van der Waals layered transition metal dichalcogenides from transient absorption spectroscopy have successfully demonstrated an ideal carrier multiplication (CM) performance with an onset of nearly 2Eg,interpretation of the CM effect from th
We investigate generation of exchange magnons by ultrashort, picosecond acoustic pulses propagating through ferromagnetic thin films. Using the Landau-Lifshitz-Gilbert equations we derive the dispersion relation for exchange magnons for an external m
The remarkable gapless and linear band structure of graphene opens up new carrier relaxation channels bridging the valence and the conduction band. These Auger scattering processes change the number of charge carriers and can give rise to a significa
Second harmonic generation (SHG) is a fundamental nonlinear optical phenomenon widely used both for experimental probes of materials and for application to optical devices. Even-order nonlinear optical responses including SHG generally require breaki