ترغب بنشر مسار تعليمي؟ اضغط هنا

Current-induced second harmonic generation in inversion-symmetric Dirac and Weyl semimetals

149   0   0.0 ( 0 )
 نشر من قبل Kazuaki Takasan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Second harmonic generation (SHG) is a fundamental nonlinear optical phenomenon widely used both for experimental probes of materials and for application to optical devices. Even-order nonlinear optical responses including SHG generally require breaking of inversion symmetry, and thus have been utilized to study noncentrosymmetric materials. Here, we study theoretically the SHG in inversion-symmetric Dirac and Weyl semimetals under a DC current which breaks the inversion symmetry by creating a nonequilibrium steady state. Based on analytic and numerical calculations, we find that Dirac and Weyl semimetals exhibit strong SHG upon application of finite current. Our experimental estimation for a Dirac semimetal Cd$_3$As$_2$ and a magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ suggests that the induced susceptibility $chi^{(2)}$ for practical applied current densities can reach $10^5~mathrm{pm}cdotmathrm{V}^{-1}$ with mid-IR or far-IR light. This value is 10$^2$-10$^4$ times larger than those of typical nonlinear optical materials. We also discuss experimental approaches to observe the current-induced SHG and comment on current-induced SHG in other topological semimetals in connection with recent experiments.



قيم البحث

اقرأ أيضاً

177 - Y. X. Zhao , Y. Lu 2016
Recently Weyl fermions have attracted increasing interest in condensed matter physics due to their rich phenomenology originated from their nontrivial monopole charges. Here we present a theory of real Dirac points that can be understood as real mono poles in momentum space, serving as a real generalization of Weyl fermions with the reality being endowed by the $PT$ symmetry. The real counterparts of topological features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, $2$D sub topological insulators and Fermi arcs, are studied in the $PT$ symmetric Dirac semimetals, and the underlying reality-dependent topological structures are discussed. In particular, we construct a minimal model of the real Dirac semimetals based on recently proposed cold atom experiments and quantum materials about $PT$ symmetric Dirac nodal line semimetals.
486 - L.E. Golub , S.A. Tarasenko 2014
The valley degeneracy of electron states in graphene stimulates intensive research of valley-related optical and transport phenomena. While many proposals on how to manipulate valley states have been put forward, experimental access to the valley pol arization in graphene is still a challenge. Here, we develop a theory of the second optical harmonic generation in graphene and show that this effect can be used to measure the degree and sign of the valley polarization. We show that, at the normal incidence of radiation, the second harmonic generation stems from imbalance of carrier populations in the valleys. The effect has a specific polarization dependence reflecting the trigonal symmetry of electron valley and is resonantly enhanced if the energy of incident photons is close to the Fermi energy.
96 - Alberto Cortijo 2016
We show that, under the effect of an external magnetic field, a photogalvanic effect and the generation of second harmonic wave can be induced in inversion-symmetric and time reversal invariant Dirac semimetals. The mechanism responsible of these non linear optical responses is the magnetochiral effect. The origin of this magnetochiral effect is the band bending of the dispersion relation in real Dirac semimetals. Some observable consequences of this phenomenon are the appearance of a dc current on the surface of the system when it is irradiated with linearly polarized light or a rotation of the polarization plane of the reflected second harmonic wave.
Within a Kubo formalism, we study dc transport and ac optical properties of 3D Dirac and Weyl semimetals. Emphasis is placed on the approach to charge neutrality and on the differences between Dirac and Weyl materials. At charge neutrality, the zero- temperature limit of the dc conductivity is not universal and also depends on the residual scattering model employed. However, the Lorenz number L retains its usual value L_0. With increasing temperature, the Wiedemann-Franz law is violated. At high temperatures, L exhibits a new plateau at a value dependent on the details of the scattering rate. Such details can also appear in the optical conductivity, both in the Drude response and interband background. In the clean limit, the interband background is linear in photon energy and always extrapolates to the origin. This background can be shifted to the right through the introduction of a massless gap. In this case, the extrapolation can cut the axis at a finite photon energy as is observed in some experiments. It is also of interest to differentiate between the two types of Weyl semimetals: those with broken time-reversal symmetry and those with broken spatial-inversion symmetry. We show that, while the former will follow the same behaviour as the 3D Dirac semimetals, for the zero magnetic field properties discussed here, the latter type will show a double step in the optical conductivity at finite doping and a single absorption edge at charge neutrality. The Drude conductivity is always finite in this case, even at charge neutrality.
148 - Tatsuhiko N. Ikeda 2019
Manipulating spin currents in magnetic insulators is a key technology in spintronics. We theoretically study a simple inversion-asymmetric model of quantum antiferromagnets, where both the exchange interaction and the magnetic field are staggered. We calculate spin currents generated by external electric and magnetic fields by using a quantum master equation. We show that an ac electric field with amplitude $E_0$ leads, through exchange-interaction modulation, to the dc and second-harmonic spin currents proportional to $E_0^2$. We also show that dc and ac staggered magnetic fields $B_0$ generate the dc and ac spin currents proportional to $B_0$, respectively. We elucidate the mechanism by an exactly solvable model, and thereby propose the ways of spin current manipulation by electromagnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا