ترغب بنشر مسار تعليمي؟ اضغط هنا

The Impact of Stellar Oscillations on Doppler Velocity Planet Searches

31   0   0.0 ( 0 )
 نشر من قبل Simon O'Toole
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a quantitative investigation of the effect of stellar oscillations on Doppler velocity planet searches. Using data from four asteroseismological observation campaigns, we find a power law relationship between the noise impact of these oscillations on Doppler velocities and both the luminosity-to-mass of the target stars, and observed integration times. Including the impact of oscillation jitter should improve the quality of Keplerian fits to Doppler velocity data. The scale of the effect these oscillations have on Doppler velocity measurements is smaller than that produced by stellar activity, but is most significant for giant and subgiant stars, and at short integration times (i.e. less than a few minutes). Such short observation times tend to be used only for very bright stars. However, since it is these very same stars that tend to be targeted for the highest precision observations, as planet searches probe to lower and lower planet masses, oscillation noise for these stars can be significant and needs to be accounted for in observing strategies.

قيم البحث

اقرأ أيضاً

We present a preliminary analysis of the sensitivity of Anglo-Australian Planet Search data to the orbital parameters of extrasolar planets. To do so, we have developed new tools for the automatic analysis of large-scale simulations of Doppler veloci ty planet search data. One of these tools is the 2-Dimensional Keplerian Lomb-Scargle periodogram, that enables the straightforward detection of exoplanets with high eccentricities (something the standard Lomb-Scargle periodogram routinely fails to do). We used this technique to re-determine the orbital parameters of HD20782b, with one of the highest known exoplanet eccentricities (e=0.97+/-0.01). We also derive a set of detection criteria that do not depend on the distribution functions of fitted Keplerian orbital parameters (which we show are non-Gaussian with pronounced, extended wings). Using these tools, we examine the selection functions in orbital period, eccentricity and planet mass of Anglo-Australian Planet Search data for three planets with large-scale Monte Carlo-like simulations. We find that the detectability of exoplanets declines at high eccentricities. However, we also find that exoplanet detectability is a strong function of epoch-to-epoch data quality, number of observations, and period sampling. This strongly suggests that simple parametrisations of the detectability of exoplanets based on whole-of-survey metrics may not be accurate. We have derived empirical relationships between the uncertainty estimates for orbital parameters that are derived from least-squares Keplerian fits to our simulations, and the true 99% limits for the errors in those parameters, which are larger than equivalent Gaussian limits by factors of 5-10. (abridged)
36 - Joseph C. Carson 2008
Within the next five years, a number of direct-imaging planet search instruments, like the VLT SPHERE instrument, will be coming online. To successfully carry out their programs, these instruments will rely heavily on a-priori information on planet c omposition, atmosphere, and evolution. Transiting planet surveys, while covering a different semi-major axis regime, have the potential to provide critical foundations for these next-generation surveys. For example, improved information on planetary evolutionary tracks may significantly impact the insights that can be drawn from direct-imaging statistical data. Other high-impact results from transiting planet science include information on mass-to-radius relationships as well as atmospheric absorption bands. The marriage of transiting planet and direct-imaging results may eventually give us the first complete picture of planet migration, multiplicity, and general evolution.
We study the impact of stellar feedback in shaping the density and velocity structure of neutral hydrogen (HI) in disc galaxies. For our analysis, we carry out $sim 4.6$pc resolution $N$-body+adaptive mesh refinement (AMR) hydrodynamic simulations of isolated galaxies, set up to mimic a Milky Way (MW), and a Large and Small Magellanic Cloud (LMC, SMC). We quantify the density and velocity structure of the interstellar medium using power spectra and compare the simulated galaxies to observed HI in local spiral galaxies from THINGS (The HI Nearby Galaxy Survey). Our models with stellar feedback give an excellent match to the observed THINGS HI density power spectra. We find that kinetic energy power spectra in feedback regulated galaxies, regardless of galaxy mass and size, show scalings in excellent agreement with super-sonic turbulence ($E(k)propto k^{-2}$) on scales below the thickness of the HI layer. We show that feedback influences the gas density field, and drives gas turbulence, up to large (kpc) scales. This is in stark contrast to density fields generated by large scale gravity-only driven turbulence. We conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales.
Over 2,000 stars were observed for one month with a high enough cadence in order to look for acoustic modes during the survey phase of the Kepler mission. Solar-like oscillations have been detected in about 540 stars. The question of why no oscillati ons were detected in the remaining stars is still open. Previous works explained the non-detection of modes with the high level of magnetic activity. However, the studied stars contained some classical pulsators and red giants that could have biased the results. In this work, we revisit this analysis on a cleaner sample of 1,014 main-sequence solar-like stars. First we compute the predicted amplitude of the modes. We find that the stars with detected modes have an amplitude to noise ratio larger than 0.94. We measure reliable rotation periods and the associated photometric magnetic index for 684 stars and in particular for 323 stars where the mode amplitude is predicted to be high enough to be detected. We find that among these 323 stars 32% have a magnetic activity level larger than the Sun at maximum activity, explaining the non-detection of p modes. Interestingly, magnetic activity cannot be the primary reason responsible for the absence of detectable modes in the remaining 68% of the stars without p modes detected and with reliable rotation periods. Thus, we investigate metallicity, inclination angle, and binarity as possible causes of low mode amplitudes. Using spectroscopic observations for a subsample, we find that a low metallicity could be the reason for suppressed modes. No clear correlation with binarity nor inclination is found. We also derive the lower limit for our photometric activity index (of 20-30 ppm) below which rotation and magnetic activity are not detected. Finally with our analysis we conclude that stars with a photometric activity index larger than 2,000 ppm have 98.3% probability of not having oscillations detected.
We use photometric observations of solar-type stars, made by the NASA Kepler Mission, to conduct a statistical study of the impact of stellar surface activity on the detectability of solar-like oscillations. We find that the number of stars with dete cted oscillations fall significantly with increasing levels of activity. The results present strong evidence for the impact of magnetic activity on the properties of near-surface convection in the stars, which appears to inhibit the amplitudes of the stochastically excited, intrinsically damped solar-like oscillations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا