ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of stellar feedback on the density and velocity structure of the interstellar medium

90   0   0.0 ( 0 )
 نشر من قبل Kearn Grisdale
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the impact of stellar feedback in shaping the density and velocity structure of neutral hydrogen (HI) in disc galaxies. For our analysis, we carry out $sim 4.6$pc resolution $N$-body+adaptive mesh refinement (AMR) hydrodynamic simulations of isolated galaxies, set up to mimic a Milky Way (MW), and a Large and Small Magellanic Cloud (LMC, SMC). We quantify the density and velocity structure of the interstellar medium using power spectra and compare the simulated galaxies to observed HI in local spiral galaxies from THINGS (The HI Nearby Galaxy Survey). Our models with stellar feedback give an excellent match to the observed THINGS HI density power spectra. We find that kinetic energy power spectra in feedback regulated galaxies, regardless of galaxy mass and size, show scalings in excellent agreement with super-sonic turbulence ($E(k)propto k^{-2}$) on scales below the thickness of the HI layer. We show that feedback influences the gas density field, and drives gas turbulence, up to large (kpc) scales. This is in stark contrast to density fields generated by large scale gravity-only driven turbulence. We conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales.

قيم البحث

اقرأ أيضاً

We present an analysis of the role of feedback in shaping the neutral hydrogen (HI) content of simulated disc galaxies. For our analysis, we have used two realisations of two separate Milky Way-like (~L*) discs - one employing a conservative feedback scheme (MUGS), the other significantly more energetic (MaGICC). To quantify the impact of these schemes, we generate zeroth moment (surface density) maps of the inferred HI distribution; construct power spectra associated with the underlying structure of the simulated cold ISM, in addition to their radial surface density and velocity dispersion profiles. Our results are compared with a parallel, self-consistent, analysis of empirical data from THINGS (The HI Nearby Galaxy Survey). Single power-law fits (P~k^gamma) to the power spectra of the stronger-feedback (MaGICC) runs (over spatial scales corresponding to 0.5 kpc to 20 kpc) result in slopes consistent with those seen in the THINGS sample (gamma = -2.5). The weaker-feedback (MUGS) runs exhibit shallower power law slopes (gamma = -1.2). The power spectra of the MaGICC simulations are more consistent though with a two-component fit, with a flatter distribution of power on larger scales (i.e., gamma = -1.4 for scales in excess of 2 kpc) and a steeper slope on scales below 1 kpc (gamma = -5), qualitatively consistent with empirical claims, as well as our earlier work on dwarf discs. The radial HI surface density profiles of the MaGICC discs show a clear exponential behaviour, while those of the MUGS suite are essentially flat; both behaviours are encountered in nature, although the THINGS sample is more consistent with our stronger (MaGICC) feedback runs.
120 - Gerhard Hensler 2010
Supernovae are the most energetic stellar events and influence the interstellar medium by their gasdynamics and energetics. By this, both also affect the star formation positively and negatively. In this paper, we review the development of the comple xity of investigations aiming at understanding the interchange between supernovae and their released hot gas with the star-forming molecular clouds. Commencing from analytical studies the paper advances to numerical models of supernova feedback from superbubble scales to galaxy structure. We also discuss parametrizations of star-formation and supernova-energy transfer efficiencies. Since evolutionary models from the interstellar medium to galaxies are numerous and apply multiple recipes of these parameters, only a representative selection of studies can be discussed here.
We introduce the Stars and MUltiphase Gas in GaLaxiEs -- SMUGGLE model, an explicit and comprehensive stellar feedback model for the moving-mesh code arepo. This novel sub-resolution model resolves the multiphase gas structure of the interstellar med ium and self-consistently generates gaseous outflows. The model implements crucial aspects of stellar feedback including photoionization, radiation pressure, energy and momentum injection from stellar winds and from supernovae. We explore this model in high-resolution isolated simulations of Milky Way-like disc galaxies. Stellar feedback regulates star formation to the observed level and naturally captures the establishment of a Kennicutt-Schmidt relation. This result is achieved independent of the numerical mass and spatial resolution of the simulations. Gaseous outflows are generated with average mass loading factors of the order of unity. Strong outflow activity is correlated with peaks in the star formation history of the galaxy with evidence that most of the ejected gas eventually rains down onto the disc in a galactic fountain flow that sustains late-time star formation. Finally, the interstellar gas in the galaxy shows a distinct multiphase distribution with a coexistence of cold, warm and hot phases.
134 - Siyao Xu , Suoqing Ji , 2019
This study is motivated by recent observations on ubiquitous interstellar density filaments and guided by modern theories of compressible magnetohydrodynamic (MHD) turbulence. The interstellar turbulence shapes the observed density structures. As the fundamental dynamics of compressible MHD turbulence, perpendicular turbulent mixing of density fluctuations entails elongated density structures aligned with the local magnetic field, accounting for low-density parallel filaments seen in diffuse atomic and molecular gas. The elongation of low-density parallel filaments depends on the turbulence anisotropy. When taking into account the partial ionization, we find that the minimum width of parallel filaments in the cold neutral medium and molecular clouds is determined by the neutral-ion decoupling scale perpendicular to magnetic field. In highly supersonic MHD turbulence in molecular clouds, both low-density parallel filaments due to anisotropic turbulent mixing and high-density filaments due to shock compression exist.
We study the structure of spatially resolved, line-of-sight velocity dispersion for galaxies in the Epoch of Reionization (EoR) traced by [CII] $158murm{m}$ line emission. Our laboratory is a simulated prototypical Lyman-break galaxy, Freesia, part o f the SERRA suite. The analysis encompasses the redshift range 6 < z < 8, when Freesia is in a very active assembling phase. We build velocity dispersion maps for three dynamically distinct evolutionary stages (Spiral Disk at z=7.4, Merger at z=8.0, and Disturbed Disk at z=6.5) using [CII] hyperspectral data cubes. We find that, at a high spatial resolution of 0.005 ($simeq 30 pc$), the luminosity-weighted average velocity dispersion is $sigma_{rm{CII}}$~23-38 km/s with the highest value belonging to the highly-structured Disturbed Disk stage. Low resolution observations tend to overestimate $sigma_{rm CII}$ values due to beam smearing effects that depend on the specific galaxy structure. For an angular resolution of 0.02 (0.1), the average velocity dispersion is 16-34% (52-115%) larger than the actual one. The [CII] emitting gas in Freesia has a Toomre parameter $mathcal{Q}$~0.2 and a rotational-to-dispersion ratio of $v_{rm c}/sigma$~ 7 similar to that observed in z=2-3 galaxies. The primary energy source for the velocity dispersion is due to gravitational processes, such as merging/accretion events; energy input from stellar feedback is generally subdominant (< 10%). Finally, we find that the resolved $sigma_{rm{CII}} - {Sigma}_{rm SFR}$ relation is relatively flat for $0.02<{Sigma}_{rm SFR}/{{rm M}_{odot}} mathrm{yr}^{-1} {mathrm kpc}^{-2} < 30$, with the majority of data lying on the derived analytical relation $sigma propto Sigma_{rm SFR}^{5/7}$. At high SFR, the increased contribution from stellar feedback steepens the relation, and $sigma_{rm{CII}}$ rises slightly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا