ﻻ يوجد ملخص باللغة العربية
In this letter we report {it in situ} small--angle neutron scattering results on the high--density (HDA) and low-density amorphous (LDA) ice structures and on intermediate structures as found during the temperature induced transformation of HDA into LDA. We show that the small--angle signal is characterised by two $Q$ regimes featuring different properties ($Q$ is the modulus of the scattering vector defined as $Q = 4pisin{(Theta)}/lambda_{rm i}$ with $Theta$ being half the scattering angle and $lambda_{rm i}$ the incident neutron wavelength). The very low--$Q$ regime ($< 5times 10^{-2}$ AA $^{-1}$) is dominated by a Porod--limit scattering. Its intensity reduces in the course of the HDA to LDA transformation following a kinetics reminiscent of that observed in wide--angle diffraction experiments. The small--angle neutron scattering formfactor in the intermediate regime of $5 times 10^{-2} < Q < 0.5$ AA$^{-1}$ HDA and LDA features a rather flat plateau. However, the HDA signal shows an ascending intensity towards smaller $Q$ marking this amorphous structure as heterogeneous. When following the HDA to LDA transition the formfactor shows a pronounced transient excess in intensity marking all intermediate structures as strongly heterogeneous on a length scale of some nano--meters.
We review a new theory of viscoelasticity of a glass-forming viscous liquid near and below the glass transition. In our model we assume that each point in the material has a specific viscosity, which varies randomly in space according to a fluctuatin
The mechanical response of naturally abundant amorphous solids such as gels, jammed grains, and biological tissues are not described by the conventional paradigm of broken symmetry that defines crystalline elasticity. In contrast, the response of suc
We show that the distribution of elements $H$ in the Hessian matrices associated with amorphous materials exhibit singularities $P(H) sim {lvert H rvert}^{gamma}$ with an exponent $gamma < 0$, as $lvert H rvert to 0$. We exploit the rotational invari
Mechanical deformation of amorphous solids can be described as consisting of an elastic part in which the stress increases linearly with strain, up to a yield point at which the solid either fractures or starts deforming plastically. It is well estab
The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decre