ﻻ يوجد ملخص باللغة العربية
We show that the distribution of elements $H$ in the Hessian matrices associated with amorphous materials exhibit singularities $P(H) sim {lvert H rvert}^{gamma}$ with an exponent $gamma < 0$, as $lvert H rvert to 0$. We exploit the rotational invariance of the underlying disorder in amorphous structures to derive these exponents exactly for systems interacting via radially symmetric potentials. We show that $gamma$ depends only on the degree of smoothness $n$ of the potential of interaction between the constituent particles at the cut-off distance, independent of the details of interaction in both two and three dimensions. We verify our predictions with numerical simulations of models of structural glass formers. Finally, we show that such singularities affect the stability of amorphous solids, through the distributions of the minimum eigenvalue of the Hessian matrix.
Mechanical deformation of amorphous solids can be described as consisting of an elastic part in which the stress increases linearly with strain, up to a yield point at which the solid either fractures or starts deforming plastically. It is well estab
We show that the low-frequency regime of the density of states of structural glass formers is crucially sensitive to the stress-ensemble from which the configurations are sampled. Specifically, in two dimensions, an exactly isotropic ensemble with ze
Sound attenuation in low temperature amorphous solids originates from their disordered structure. However, its detailed mechanism is still being debated. Here we analyze sound attenuation starting directly from the microscopic equations of motion. We
We investigate the quantum dynamics of Two-Level Systems (TLS) in glasses at low temperatures (1 K and below). We study an ensemble of TLSs coupled to phonons. By integrating out the phonons within the framework of the Gorini-Kossakowski-Sudarshan-Li
The mechanical response of naturally abundant amorphous solids such as gels, jammed grains, and biological tissues are not described by the conventional paradigm of broken symmetry that defines crystalline elasticity. In contrast, the response of suc