ﻻ يوجد ملخص باللغة العربية
Observations by the Cores to Disk Legacy Team with the Spitzer Space Telescope have identified a low luminosity, mid-infrared source within the dense core, Lynds 1014, which was previously thought to harbor no internal source. Followup near-infrared and submillimeter interferometric observations have confirmed the protostellar nature of this source by detecting scattered light from an outflow cavity and a weak molecular outflow. In this paper, we report the detection of cm continuum emission with the VLA. The emission is characterized by a quiescent, unresolved 90 uJy 6 cm source within 0.2 of the Spitzer source. The spectral index of the quiescent component is $alpha = 0.37pm 0.34$ between 6 cm and 3.6 cm. A factor of two increase in 6 cm emission was detected during one epoch and circular polarization was marginally detected at the $5sigma$ level with Stokes {V/I} $= 48 pm 16$% . We have searched for 22 GHz H2O maser emission toward L1014-IRS, but no masers were detected during 7 epochs of observations between June 2004 and December 2006. L1014-IRS appears to be a low-mass, accreting protostar which exhibits cm emission from a thermal jet or a wind, with a variable non-thermal emission component. The quiescent cm radio emission is noticeably above the correlation of 3.6 cm and 6 cm luminosity versus bolometric luminosity, indicating more radio emission than expected. We characterize the cm continuum emission in terms of observations of other low-mass protostars, including updated correlations of centimeter continuum emission with bolometric luminosity and outflow force, and discuss the implications of recent larger distance estimates on the physical attributes of the protostar and dense molecular core.
Using the Submillimeter Array we report the discovery of a compact low mass bipolar molecular outflow from L1014-IRS and confirm its association with the L1014 dense core at 200 pc. Consequently, L1014-IRS is the lowest luminosity (L ~0.09 Lsun) and
We have performed new laboratory experiments which gave us the possibility to obtain an estimate of the amount of carbon chain oxides (namely C3O2, C2O, and C3O) formed after irradiation (with 200 keV protons) of pure CO ice, at 16 K. The analysis of
Although water is an essential and widespread molecule in star-forming regions, its chemical formation pathways are still not very well constrained. Observing the level of deuterium fractionation of OH, a radical involved in the water chemical networ
We present new high resolution and high sensitivity multi-frequency VLA radio continuum observations of the G9.62+0.19-F hot molecular core. We detect for the first time faint centimetric radio continuum emission at the position of the core. The cent
The low mass protostar IRAS 16293$-$2422 is a well-known young stellar system that is observed in the L1689N molecular cloud in the constellation of Ophiuchus. In the interstellar medium and solar system bodies, water is a necessary species for the f