ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a Low Mass Bipolar Molecular Outflow from L1014-IRS with the Submillimeter Array

139   0   0.0 ( 0 )
 نشر من قبل Tyler Bourke
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the Submillimeter Array we report the discovery of a compact low mass bipolar molecular outflow from L1014-IRS and confirm its association with the L1014 dense core at 200 pc. Consequently, L1014-IRS is the lowest luminosity (L ~0.09 Lsun) and perhaps the lowest mass source known to be driving a bipolar molecular outflow, which is one of the smallest known in size (~500 AU), mass (< 10^{-4} Msun), and energetics (e.g., force < 10^{-7} Msun km/s/yr).



قيم البحث

اقرأ أيضاً

Very low-mass stars are known to have jets and outflows, which is indicative of a scaled-down version of low-mass star formation. However, only very few outflows in very low-mass sources are well characterized. We characterize the bipolar molecular o utflow of the very low-mass star Par-Lup3-4, a 0.12 M$_{odot}$ object known to power an optical jet. We observed Par-Lup3-4 with ALMA in Bands 6 and 7, detecting both the continuum and CO molecular gas. In particular, we studied three main emission lines: CO(2-1), CO(3-2), and $^{13}$CO(3-2). Our observations reveal for the first time the base of a bipolar molecular outflow in a very low-mass star, as well as a stream of material moving perpendicular to the primary outflow of this source. The primary outflow morphology is consistent with the previously determined jet orientation and disk inclination. The outflow mass is $9.5times10^{-7}mathrm{M}_{odot}$ , with an outflow rate of $4.3times10^{-9}mathrm{M}_{odot}mathrm{yr}^{-1}$ A new fitting to the spectral energy distribution suggests that Par-Lup3-4 may be a binary system. We have characterized Par-Lup3-4 in detail, and its properties are consistent with those reported in other very low-mass sources. This source provides further evidence that very low-mass sources form as a scaled-down version of low-mass stars.
171 - Yancy L. Shirley 2007
Observations by the Cores to Disk Legacy Team with the Spitzer Space Telescope have identified a low luminosity, mid-infrared source within the dense core, Lynds 1014, which was previously thought to harbor no internal source. Followup near-infrared and submillimeter interferometric observations have confirmed the protostellar nature of this source by detecting scattered light from an outflow cavity and a weak molecular outflow. In this paper, we report the detection of cm continuum emission with the VLA. The emission is characterized by a quiescent, unresolved 90 uJy 6 cm source within 0.2 of the Spitzer source. The spectral index of the quiescent component is $alpha = 0.37pm 0.34$ between 6 cm and 3.6 cm. A factor of two increase in 6 cm emission was detected during one epoch and circular polarization was marginally detected at the $5sigma$ level with Stokes {V/I} $= 48 pm 16$% . We have searched for 22 GHz H2O maser emission toward L1014-IRS, but no masers were detected during 7 epochs of observations between June 2004 and December 2006. L1014-IRS appears to be a low-mass, accreting protostar which exhibits cm emission from a thermal jet or a wind, with a variable non-thermal emission component. The quiescent cm radio emission is noticeably above the correlation of 3.6 cm and 6 cm luminosity versus bolometric luminosity, indicating more radio emission than expected. We characterize the cm continuum emission in terms of observations of other low-mass protostars, including updated correlations of centimeter continuum emission with bolometric luminosity and outflow force, and discuss the implications of recent larger distance estimates on the physical attributes of the protostar and dense molecular core.
The first hydrostatic core, the first quasi-hydrostatic object formed during the star formation process, is still the observational missing link between the prestellar and protostellar phases, mainly due to its short lifetime. Although we have not es tablished a clear method to identify this rare object, recent theoretical studies predict that the first core has millimeter continuum emission and low-velocity outflow with a wide opening angle. An extensive continuum/outflow survey toward a large number of $$starless$$ cores in nearby star-forming regions works as a pathfinder. We observed 32 prestellar cores in Taurus with an average density of $gtrsim$10$^5$ cm$^{-3}$ in 1.3 mm continuum and molecular lines using the Atacama Large Millimeter/submillimeter Array$-$Atacama Compact Array (ALMA$-$ACA) stand-alone mode. Among the targets, MC35-mm centered at one of the densest $$starless$$ cores in Taurus has blueshifted/redshifted wings in the $^{12}$CO (2-1) line, indicating that there is deeply embedded object driving molecular outflow. The observed velocities and sizes of the possible outflow lobes are 2-4 km s$^{-1}$, and $sim$2 $times$10$^3$ au, respectively, and the dynamical time is calculated to be $sim$10$^3$ yr. In addition to this, the core is one of the strongest N$_2$D$^{+}$ (3-2) emitters in our sample. All of the observed signatures do not conflict with any of the theoretical predictions about the first hydrostatic core so far, and thus MC35-mm is unique as the only first-core candidate in the Taurus molecular cloud.
588 - Ngoc Phan-Bao 2008
Studying the earliest stages in the birth of stars is crucial for understanding how they form. Brown dwarfs with masses between that of stars and planets are not massive enough to maintain stable hydrogen-burning fusion reactions during most of their lifetime. Their origins are subject to much debate in recent literature because their masses are far below the typical mass where core collapse is expected to occur. We present the first confirmed evidence that brown dwarfs undergo a phase of molecular outflow that is typical of young stars. Using the Submillimeter Array, we have obtained a map of a bipolar molecular outflow from a young brown dwarf. We estimate an outflow mass of 1.6 x 10^-4 M_Sun and a mass-loss rate of 1.4 x 10^-9 M_Sun. These values are over two orders of magnitude smaller than the typical ones for T Tauri stars. From our millimiter continuum data and our own analysis of Spitzer infrared photometry, we estimate that the brown dwarf has a disk with a mass of 8 x 10^-3 M_Sun and an outer disk radius of 80 AU. Our results demonstrate that the bipolar molecular outflow operates down to planetary masses, occurring in brown dwarfs as a scaled-down version of the universal process seen in young stars.
Massive protostars generate strong radiation feedback, which may help set the mass they achieve by the end of the accretion process. Studying such feedback is therefore crucial for understanding the formation of massive stars. We report the discovery of a photoionized bipolar outflow towards the massive protostar G45.47+0.05 using high-resolution observations at 1.3 mm with the Atacama Large Millimeter/Submillimeter Array (ALMA) and at 7 mm with the Karl G. Jansky Very Large Array (VLA). By modeling the free-free continuum, the ionized outflow is found to be a photoevaporation flow with an electron temperature of 10,000 K and an electron number density of ~1.5x10^7 cm^-3 at the center, launched from a disk of radius of 110 au. H30alpha hydrogen recombination line emission shows strong maser amplification, with G45 being one of very few sources to show such millimeter recombination line masers. The mass of the driving source is estimated to be 30-50 Msun based on the derived ionizing photon rate, or 30-40 Msun based on the H30alpha kinematics. The kinematics of the photoevaporated material is dominated by rotation close to the disk plane, while accelerated to outflowing motion above the disk plane. The mass loss rate of the photoevaporation outflow is estimated to be ~(2-3.5)x10^-5 Msun/yr. We also found hints of a possible jet embedded inside the wide-angle ionized outflow with non-thermal emissions. The possible co-existence of a jet and a massive photoevaporation outflow suggests that, in spite of the strong photoionization feedback, accretion is still on-going.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا