ﻻ يوجد ملخص باللغة العربية
Using the Submillimeter Array we report the discovery of a compact low mass bipolar molecular outflow from L1014-IRS and confirm its association with the L1014 dense core at 200 pc. Consequently, L1014-IRS is the lowest luminosity (L ~0.09 Lsun) and perhaps the lowest mass source known to be driving a bipolar molecular outflow, which is one of the smallest known in size (~500 AU), mass (< 10^{-4} Msun), and energetics (e.g., force < 10^{-7} Msun km/s/yr).
Very low-mass stars are known to have jets and outflows, which is indicative of a scaled-down version of low-mass star formation. However, only very few outflows in very low-mass sources are well characterized. We characterize the bipolar molecular o
Observations by the Cores to Disk Legacy Team with the Spitzer Space Telescope have identified a low luminosity, mid-infrared source within the dense core, Lynds 1014, which was previously thought to harbor no internal source. Followup near-infrared
The first hydrostatic core, the first quasi-hydrostatic object formed during the star formation process, is still the observational missing link between the prestellar and protostellar phases, mainly due to its short lifetime. Although we have not es
Studying the earliest stages in the birth of stars is crucial for understanding how they form. Brown dwarfs with masses between that of stars and planets are not massive enough to maintain stable hydrogen-burning fusion reactions during most of their
Massive protostars generate strong radiation feedback, which may help set the mass they achieve by the end of the accretion process. Studying such feedback is therefore crucial for understanding the formation of massive stars. We report the discovery