ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA detection of water vapour in the low mass protostar IRAS 16293$-$2422

405   0   0.0 ( 0 )
 نشر من قبل Sabyasachi Pal Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low mass protostar IRAS 16293$-$2422 is a well-known young stellar system that is observed in the L1689N molecular cloud in the constellation of Ophiuchus. In the interstellar medium and solar system bodies, water is a necessary species for the formation of life. We present the spectroscopic detection of the rotational emission line of water (H$_{2}$O) vapour from the low mass protostar IRAS 16293$-$2422 using the Atacama Large Millimeter/submillimeter Array (ALMA) band 5 observation. The emission line of H$_{2}$O is detected at frequency $ u$ = 183.310 GHz with transition J=3$_{1,3}$$-$2$_{2,2}$. The statistical column density of the emission line of water vapour is $N$(H$_{2}$O) = 4.2$times$10$^{16}$ cm$^{-2}$ with excitation temperature ($T_{ex}$) = 124$pm$10 K. The fractional abundance of H$_{2}$O with respect to H$_{2}$ is 1.44$times$10$^{-7}$ where $N$(H$_{2}$) = 2.9$times$10$^{23}$ cm$^{-2}$.



قيم البحث

اقرأ أيضاً

The protonated form of CO2, HOCO+, is assumed to be an indirect tracer of CO2 in the millimeter/submillimeter regime since CO2 lacks a permanent dipole moment. Here, we report the detection of two rotational emission lines (4 0,4-3 0,3) and (5 0,5-4 0,4) of HOCO+ in IRAS 16293-2422. For our observations, we have used EMIR heterodyne 3 mm receiver of the IRAM 30m telescope. The observed abundance of HOCO+ is compared with the simulations using the 3-phase NAUTILUS chemical model. Implications of the measured abundances of HOCO+ to study the chemistry of CO2 ices using JWST-MIRI and NIRSpec are discussed as well.
Methyl cyanide (CH3CN) and propyne (CH3CCH) are two molecules commonly used as gas thermometers for interstellar gas. They are detected in several astrophysical environments and in particular towards protostars. Using data of the low-mass protostar I RAS 16293-2422 obtained with the IRAM 30m single-dish telescope, we constrained the origin of these two molecules in the envelope of the source. The line shape comparison and the results of a radiative transfer analysis both indicate that the emission of CH3CN arises from a warmer and inner region of the envelope than the CH3CCH emission. We compare the observational results with the predictions of a gas-grain chemical model. Our model predicts a peak abundance of CH3CCH in the gas-phase in the outer part of the envelope, at around 2000 au from the central star, which is relatively close to the emission size derived from the observations. The predicted CH3CN abundance only rises at the radius where the grain mantle ices evaporate, with an abundance similar to the one derived from the observations.
The HDO/H2O ratio is a powerful diagnostic to understand the evolution of water from the first stages of star formation to the formation of planets and comets. Our aim is to determine precisely the abundance distribution of HDO towards the low-mass p rotostar IRAS16293-2422 and learn more about the water formation mechanisms by determining the HDO/H2O abundance ratio. A spectral survey of the source IRAS16293-2422 was carried out in the framework of the CHESS Herschel Key program with the HIFI instrument, allowing the detection of numerous HDO lines. Other transitions have been observed previously with ground-based telescopes. The spherical Monte Carlo radiative transfer code RATRAN was used to reproduce the observed line profiles of HDO by assuming an abundance jump. To determine the H2O abundance throughout the envelope, a similar study was made of the H2-18O observed lines, as the H2O main isotope lines are contaminated by the outflows. We derive an inner HDO abundance of 1.7e-7 and an outer HDO abundance of 8e-11. To reproduce the HDO absorption lines, it is necessary to add an absorbing layer in front of the envelope. It may correspond to a water-rich layer created by the photodesorption of the ices at the edges of the molecular cloud. The HDO/H2O ratio is ~1.4-5.8% in the hot corino whereas it is ~0.2-2.2% in the outer envelope. It is estimated at ~4.8% in the added absorbing layer. Although it is clearly higher than the cosmic D/H abundance, the HDO/H2O ratio remains lower than the D/H ratio derived for other deuterated molecules observed in the same source. The similarity of the ratios derived in the hot corino and in the added absorbing layer suggests that water formed before the gravitational collapse of the protostar, contrary to formaldehyde and methanol, which formed later once the CO molecules had depleted on the grains.
294 - B. Parise , F. Du , F.-C. Liu 2012
Although water is an essential and widespread molecule in star-forming regions, its chemical formation pathways are still not very well constrained. Observing the level of deuterium fractionation of OH, a radical involved in the water chemical networ k, is a promising way to infer its chemical origin. We aim at understanding the formation mechanisms of water by investigating the origin of its deuterium fractionation. This can be achieved by observing the abundance of OD towards the low-mass protostar IRAS16293-2422, where the HDO distribution is already known. Using the GREAT receiver on board SOFIA, we observed the ground-state OD transition at 1391.5 GHz towards the low-mass protostar IRAS16293-2422. We also present the detection of the HDO 111-000 line using the APEX telescope. We compare the OD/HDO abundance ratio inferred from these observations with the predictions of chemical models. The OD line is detected in absorption towards the source continuum. This is the first detection of OD outside the solar system. The SOFIA observation, coupled to the observation of the HDO 111-000 line, provides an estimate of the abundance ratio OD/HDO ~ 17-90 in the gas where the absorption takes place. This value is fairly high compared with model predictions. This may be reconciled if reprocessing in the gas by means of the dissociative recombination of H2DO+ further fractionates OH with respect to water. The present observation demonstrates the capability of the SOFIA/GREAT instrument to detect the ground transition of OD towards star-forming regions in a frequency range that was not accessible before. Dissociative recombination of H2DO+ may play an important role in setting a high OD abundance. Measuring the branching ratios of this reaction in the laboratory will be of great value for chemical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا