ترغب بنشر مسار تعليمي؟ اضغط هنا

Total Differential Errors in Two-Port Network Analyser Measurements

106   0   0.0 ( 0 )
 نشر من قبل Petros Zimourtopoulos E
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since S-parameter measurements without uncertainty cannot claim any credibility, the uncertainties in full two-port Vector Network Analyser (VNA) measurements were estimated using total complex differentials (Total Differential Errors). To express precisely a comparison relation between complex differential errors, their differential error regions (DERs) were used. To demonstrate the method in the most accurate case of a direct zero-length thru, practical results are presented for commonly used Z-parameters of a simple, two-port, DC resistive T-network, which was built and tested against frequency with a VNA measurement system extended by two lengthy transmission lines.



قيم البحث

اقرأ أيضاً

The objective was to study uncertainty in antenna input impedance resulting from full one-port Vector Network Analyzer (VNA) measurements. The VNA process equation in the reflection coefficient p of a load, its measurement m and three errors Es -dete rminable from three standard loads and their measurements- was considered. Differentials were selected to represent measurement inaccuracies and load uncertainties (Differential Errors). The differential operator was applied on the process equation and the total differential error dp for any unknown load (Device Under Test DUT) was expressed in terms of dEs and dm, without any simplification. Consequently, the differential error of input impedance Z -or any other physical quantity differentiably dependent on p- is expressible. Furthermore, to express precisely a comparison relation between complex differential errors, the geometric Differential Error Region and its Differential Error Intervals were defined. Practical results are presented for an indoor UHF ground-plane antenna in contrast with a common 50 Ohm DC resistor inside an aluminum box. These two built, unshielded and shielded, DUTs were tested against frequency under different system configurations and measurement considerations. Intermediate results for Es and dEs characterize the measurement system itself. A number of calculations and illustrations demonstrate the application of the method.
An analytical method was developed to estimate errors in quantities depended on full one-port vector network analyser (VNA) measurements using differentials and a complex differential error region (DER) was defined. To evaluate the method, difference s instead of differentials were placed over a DER which was then analysed and compared with another commonly used estimated error. Two real differential error intervals (DEIs) were defined by the greatest lower and least upper bounds of DER projections. To demonstrate the method, a typical device under test (DUT) was built and tested against frequency. Practically, a DER and its DEIs are solely based on manufacturers data for standard loads and their uncertainties, measured values and their inaccuracies.
Utilizing the effect of losses, we show that symmetric 3-port devices exhibit coherent perfect absorption of waves and we provide the corresponding conditions on the reflection and transmission coefficients. Infinite combinations of asymmetric inputs with different amplitudes and phase at each port as well as a completely symmetric input, are found to be perfectly absorbed. To illustrate the above we study an acoustic 3-port network operating in a subwavelength frequency both theoretically and experimentally. In addition we show how the output from a 3-port network is altered, when conditions of perfect absorption are met but the input waves phase and amplitude vary. In that regard, we propose optimized structures which feature both perfect absorption and perfect transmission at the same frequency by tuning the amplitudes and phases of the input waves.
An analytical method was developed, to estimate uncertainties in full two-port Vector Network Analyzer measurements, using total differentials of S-parameters. System error uncertainties were also estimated from total differentials involving two trip les of standards, in the Direct Through connection case. Standard load uncertainties and measurement inaccuracies were represented by independent differentials. Complex uncertainty in any quantity, differentiably dependent on S-parameters, is estimated by the corresponding Differential Error Region. Real uncertainties, rectangular and polar, are estimated by the orthogonal parallelogram and annular sector circumscribed about the Differential Error Region, respectively. From the users point of view, manufactures data may be used to set the independent differentials and apply the method. Demonstration results include: (1) System error differentials for Short, matching Load and Open pairs of opposite sex standards; (2) System error uncertainties for VNA extended by two lengthy transmission lines of opposite sex end-connectors; (3) High uncertainties in Z-parameters against frequency of an appropriately designed, DC resistive, T-Network; (4) Moderate uncertainties in amplitude and phase patterns of a designed UHF radial discone antenna (azimuthally rotated by a built positioner, under developed software control of a built hardware controller) polarization coupled with a constructed gain standard antenna (stationary) into an anechoic chamber.
In order to measure the total cross section for thermal neutrons, a photoneutron source (PNS, phase 1) has been developed for the acquisition of nuclear data for the Thorium Molten Salt Reactor (TMSR) at the Shanghai Institute of Applied Physics (SIN AP). PNS is an electron LINAC pulsed neutron facility that uses the time-of-flight (TOF) technique. It records the neutron TOF and identifies neutrons and $gamma$-rays by using a digital signal processing technique. The background is obtained by using a combination of employing 12.8 cm boron-loaded polyethylene(PEB) (5$%$ w.t.) to block the flight path and Monte Carlo methods. The neutron total cross sections of natural beryllium are measured in the neutron energy region from 0.007 to 0.1 eV. The present measurement result is compared with the fold Harvey data with the response function of PNS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا