ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular Momentum Transport in Accretion Disks: Scaling Laws in MRI-driven Turbulence

48   0   0.0 ( 0 )
 نشر من قبل Chi-kwan Chan
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Martin E. Pessah




اسأل ChatGPT حول البحث

We present a scaling law that predicts the values of the stresses obtained in numerical simulations of saturated MRI-driven turbulence in non-stratified shearing boxes. It relates the turbulent stresses to the strength of the vertical magnetic field, the sound speed, the vertical size of the box, and the numerical resolution and predicts accurately the results of 35 numerical simulations performed for a wide variety of physical conditions. We use our result to show that the saturated stresses in simulations with zero net magnetic flux depend linearly on the numerical resolution and would become negligible if the resolution were set equal to the natural dissipation scale in astrophysical disks. We conclude that, in order for MRI-driven turbulent angular momentum transport to be able to account for the large value of the effective alpha viscosity inferred observationally, the disk must be threaded by a significant vertical magnetic field and the turbulent magnetic energy must be in near equipartition with the thermal energy. This result has important implications for the spectra of accretion disks and their stability.

قيم البحث

اقرأ أيضاً

Following the idea that dissipation in turbulence at high Reynolds number is by events singular in space-time and described by solutions of the inviscid Euler equations, we draw the conclusion that in such flows scaling laws should depend only on qua ntities appearing in the Euler equations. This excludes viscosity or a turbulent length as scaling parameters and constrains drastically possible analytical pictures of this limit. We focus on the law of drag by Newton for a projectile moving quickly in a fluid at rest. Inspired by the Newtons drag force law (proportional to the square of the speed of the moving object in the limit of large Reynolds numbers), which is well verified in experiments when the location of the detachment of the boundary layer is defined, we propose an explicit relationship between Reynoldss stress in the turbulent wake and quantities depending on the velocity field (averaged in time but depending on space), in the form of an integro-differential equation for the velocity which is solved for a Poiseuille flow in a circular pipe.
In accretion disks with large-scale ordered magnetic fields, the magnetorotational instability (MRI) is marginally suppressed, so other processes may drive angular momentum transport leading to accretion. Accretion could then be driven by large-scale magnetic fields via magnetic braking, but large-scale magnetic flux can build-up onto the black hole and within the disk leading to a magnetically-arrested disk (MAD). Such a MAD state is unstable to the magnetic Rayleigh-Taylor (RT) instability, which itself leads to vigorous turbulence and the emergence of low-density highly-magnetized bubbles. This instability was studied in a thin (ratio of half-height H to radius R, $H/R approx 0.1$) MAD simulation, where it has a more dramatic effect on the dynamics of the disk than for thicker disks. We find that the low-density bubbles created by the magnetic RT instability decrease the stress (leading to angular momentum transport) in the disk rather than increasing magnetic torques. Indeed, we find that the dominant component of the stress is due to turbulent magnetic fields, despite the suppression of the axisymmetric MRI and the dominant presence of large-scale magnetic fields. This suggests that the magnetic RT instability plays a significant role in driving angular momentum transport in MADs.
104 - Zitao Hu , Xue-Ning Bai 2021
It has recently been shown that the inner region of protoplanetary disks (PPDs) is governed by wind-driven accretion, and the resulting accretion flow showing complex vertical profiles. Such complex flow structures are further enhanced due to the Hal l effect, especially when the background magnetic field is aligned with disk rotation. We investigate how such flow structures impact global dust transport via Monte-Carlo simulations, focusing on two scenarios. In the first scenario, the toroidal magnetic field is maximized in the miplane, leading to accretion and decretion flows above and below. In the second scenario, the toroidal field changes sign across the midplane, leading to an accretion flow at the disk midplane, with decretion flows above and below. We find that in both cases, the contribution from additional gas flows can still be accurately incorporated into the advection-diffusion framework for vertically-integrated dust transport, with enhanced dust radial diffusion up to an effective $alpha^{rm eff}sim10^{-2}$ for strongly coupled dust, even when background turbulence is weak $alpha<10^{-4}$. Dust radial drift is also modestly enhanced in the second scenario. We provide a general analytical theory that accurately reproduces our simulation results, thus establishing a framework to model global dust transport that realistically incorporates vertical gas flow structures. We also note that the theory is equally applicable to the transport of chemical species.
We use experiments and direct numerical simulations to probe the phase-space of low-curvature Taylor--Couette (TC) flow in the vicinity of the ultimate regime. The cylinder radius ratio is fixed at $eta=r_i/r_o=0.91$. Non-dimensional shear drivings ( Taylor numbers $text{Ta}$) in the range $10^7leqtext{Ta}leq10^{11}$ are explored for both co- and counter-rotating configurations. In the $text{Ta}$ range $10^8leqtext{Ta}leq10^{10}$, we observe two local maxima of the angular momentum transport as a function of the cylinder rotation ratio, which can be described as either as co- and counter-rotating due to their location or as broad and narrow due to their shape. We confirm that the broad peak is accompanied by the strengthening of the large-scale structures, and that the narrow peak appears once the driving (Ta) is strong enough. As first evidenced in numerical simulations by Brauckmann emph{et al.}~(2016), the broad peak is produced by centrifugal instabilities and that the narrow peak is a consequence of shear instabilities. We describe how the peaks change with $text{Ta}$ as the flow becomes more turbulent. Close to the transition to the ultimate regime when the boundary layers (BLs) become turbulent, the usual structure of counter-rotating Taylor vortex pairs breaks down and stable unpaired rolls appear locally. We attribute this state to changes in the underlying roll characteristics during the transition to the ultimate regime. Further changes in the flow structure around $text{Ta}approx10^{10}$ cause the broad peak to disappear completely and the narrow peak to move. This second transition is caused when the regions inside the BLs which are locally smooth regions disappear and the whole boundary layer becomes active.
We present angular momentum transport (torque) measurements in two recent experimental studies of the turbulent flow between independently rotating cylinders. In addition to these studies, we reanalyze prior torque measurements to expand the range of control parameters for the experimental Taylor-Couette flows. We find that the torque may be described as a product of functions that depend only on the Reynolds number, which describes the turbulent driving intensity, and the rotation number, which characterizes the effects of global rotation. For a given Reynolds number, the global angular momentum transport for Keplerian-like flow profiles is approximately 14% of the maximum achievable transport rate. We estimate that this level of transport would produce an accretion rate of $dot{M}/dot{M_0} sim 10^{-3}$ in astrophysical disks. We argue that this level of transport from hydrodynamics alone could be significant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا