ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular momentum transport and turbulence in laboratory models of Keplerian flows

37   0   0.0 ( 0 )
 نشر من قبل Matthew Paoletti
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present angular momentum transport (torque) measurements in two recent experimental studies of the turbulent flow between independently rotating cylinders. In addition to these studies, we reanalyze prior torque measurements to expand the range of control parameters for the experimental Taylor-Couette flows. We find that the torque may be described as a product of functions that depend only on the Reynolds number, which describes the turbulent driving intensity, and the rotation number, which characterizes the effects of global rotation. For a given Reynolds number, the global angular momentum transport for Keplerian-like flow profiles is approximately 14% of the maximum achievable transport rate. We estimate that this level of transport would produce an accretion rate of $dot{M}/dot{M_0} sim 10^{-3}$ in astrophysical disks. We argue that this level of transport from hydrodynamics alone could be significant.

قيم البحث

اقرأ أيضاً

We use experiments and direct numerical simulations to probe the phase-space of low-curvature Taylor--Couette (TC) flow in the vicinity of the ultimate regime. The cylinder radius ratio is fixed at $eta=r_i/r_o=0.91$. Non-dimensional shear drivings ( Taylor numbers $text{Ta}$) in the range $10^7leqtext{Ta}leq10^{11}$ are explored for both co- and counter-rotating configurations. In the $text{Ta}$ range $10^8leqtext{Ta}leq10^{10}$, we observe two local maxima of the angular momentum transport as a function of the cylinder rotation ratio, which can be described as either as co- and counter-rotating due to their location or as broad and narrow due to their shape. We confirm that the broad peak is accompanied by the strengthening of the large-scale structures, and that the narrow peak appears once the driving (Ta) is strong enough. As first evidenced in numerical simulations by Brauckmann emph{et al.}~(2016), the broad peak is produced by centrifugal instabilities and that the narrow peak is a consequence of shear instabilities. We describe how the peaks change with $text{Ta}$ as the flow becomes more turbulent. Close to the transition to the ultimate regime when the boundary layers (BLs) become turbulent, the usual structure of counter-rotating Taylor vortex pairs breaks down and stable unpaired rolls appear locally. We attribute this state to changes in the underlying roll characteristics during the transition to the ultimate regime. Further changes in the flow structure around $text{Ta}approx10^{10}$ cause the broad peak to disappear completely and the narrow peak to move. This second transition is caused when the regions inside the BLs which are locally smooth regions disappear and the whole boundary layer becomes active.
We present numerical simulations of circular Couette flow in axisymmetric and fully three-dimensional geometry of a cylindrical annulus inspired by Princeton MRI liquid gallium experiment. The incompressible Navier-Stokes equations are solved with th e spectral element code Nek5000 incorporating realistic horizontal boundary conditions of differentially rotating rings. We investigate the effect of changing rotation rates (Reynolds number) and of the horizontal boundary conditions on flow structure, Ekman circulation and associated transport of angular momentum through the onset of unsteadiness and three-dimensionality. A mechanism for the explanation of the dependence of the Ekman flows and circulation on horizontal boundary conditions is proposed.
125 - Wouter Bos 2014
The angle between subsequent particle displacement increments is evaluated as a function of the timelag in isotropic turbulence. It is shown that the evolution of this angle contains two well-defined power-laws, reflecting the multi-scale dynamics of high-Reynolds number turbulence. The proba-bility density function of the directional change is shown to be self-similar and well approximated by an analytically derived model assuming Gaussianity and independence of the velocity and the Lagrangian acceleration.
178 - Paul Manneville 2017
Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear flows is still not well understood. Contrasting with the processes by which chaotic flow inside turbulent patches is sustained at the local (minimal flow unit) scale, the mechanisms controlling the obliqueness of laminar-turbulent interfaces typically observed all along the coexistence range are still mysterious. An extension of Waleffes approach [Phys. Fluids 9 (1997) 883--900] is used to show that, already at the local scale, drift flows breaking the problems spanwise symmetry are generated just by slightly detuning the modes involved in the self-sustainment process. This opens perspectives for theorizing the formation of laminar-turbulent patterns.
237 - N.E. Sujovolsky , P.D. Mininni , 2017
The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit must be found to channel the energy to the small scales where it can be dissipated. In turbulence this takes the form of an energy cascade, whereas o ne possible mechanism in a balanced flow at large scales is through the formation of fronts, a common occurrence in geophysical dynamics. We show in this paper that an iconic configuration in laboratory and numerical experiments for the study of turbulence, that of the Taylor-Green or von Karman swirling flow, can be suitably adapted to the case of fluids with large aspect ratios, leading to the creation of an imposed large-scale vertical shear. To this effect we use direct numerical simulations of the Boussinesq equations without net rotation and with no small-scale modeling, and with this idealized Taylor-Green set-up. Various grid spacings are used, up to $2048^2times 256$ spatial points. The grids are always isotropic, with box aspect ratios of either $1:4$ or $1:8$. We find that when shear and stratification are comparable, the imposed shear layer resulting from the forcing leads to the formation of multiple fronts and filaments which destabilize and further evolve into a turbulent flow in the bulk, with a sizable amount of dissipation and mixing, and with a cycle of front creation, instability, and development of turbulence. The results depend on the vertical length scales for shear and for stratification, with stronger large-scale gradients being generated when the two length scales are comparable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا