ﻻ يوجد ملخص باللغة العربية
Following the idea that dissipation in turbulence at high Reynolds number is by events singular in space-time and described by solutions of the inviscid Euler equations, we draw the conclusion that in such flows scaling laws should depend only on quantities appearing in the Euler equations. This excludes viscosity or a turbulent length as scaling parameters and constrains drastically possible analytical pictures of this limit. We focus on the law of drag by Newton for a projectile moving quickly in a fluid at rest. Inspired by the Newtons drag force law (proportional to the square of the speed of the moving object in the limit of large Reynolds numbers), which is well verified in experiments when the location of the detachment of the boundary layer is defined, we propose an explicit relationship between Reynoldss stress in the turbulent wake and quantities depending on the velocity field (averaged in time but depending on space), in the form of an integro-differential equation for the velocity which is solved for a Poiseuille flow in a circular pipe.
We formulate multifractal models for velocity differences and gradients which describe the full range of length scales in turbulent flow, namely: laminar, dissipation, inertial, and stirring ranges. The models subsume existing models of inertial rang
Two-dimensional statistically stationary isotropic turbulence with an imposed uniform scalar gradient is investigated. Dimensional arguments are presented to predict the inertial range scaling of the turbulent scalar flux spectrum in both the inverse
Energy flux plays a key role in the analyses of energy-cascading turbulence. In isotropic turbulence, the flux is given by a scalar as a function of the magnitude of the wavenumber. On the other hand, the flux in anisotropic turbulence should be a ge
Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities
We report results of sumulation of wave turbulence. Both inverse and direct cascades are observed. The definition of mesoscopic turbulence is given. This is a regime when the number of modes in a system involved in turbulence is high enough to qualit