ﻻ يوجد ملخص باللغة العربية
Even-order dispersion cancellation, an effect previously identified with frequency-entangled photons, is demonstrated experimentally for the first time with a linear, classical interferometer. A combination of a broad bandwidth laser and a high resolution spectrometer was used to measure the intensity correlations between anti-correlated optical frequencies. Only 14% broadening of the correlation signal is observed when significant material dispersion, enough to broaden the regular interferogram by 4250%, is introduced into one arm of the interferometer.
Dispersion and its cancellation in entanglement-based nonlocal quantum measurements are of fundamental and practical interests. We report the first demonstration of cancellation of femtosecond-level dispersion by inverting the sign of the differentia
The dispersion cancellation observed in Hong-Ou-Mandel (HOM) interference between frequency-entangled photon pairs has been the basis of quantum optical coherence tomography and quantum clock synchronization. Here we explore the effect of phase dispe
Energy-time entangled photon pairs remain tightly correlated in time when the photons are passed through equal magnitude, but opposite in sign, dispersion. A recent experimental demonstration has observed this effect on ultrafast time-scales using se
Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted mu
We derive an inequality bounding the strength of temporal correlations for a pair of light beams prepared in a separable state and propagating through dispersive media with opposite signs of group velocity dispersion. The presented inequality can be