ترغب بنشر مسار تعليمي؟ اضغط هنا

0.54 {mu}m resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography

549   0   0.0 ( 0 )
 نشر من قبل Masayuki Okano
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 $mu$m resolution two-photon interference, which surpasses the current record resolution 0.75 $mu$m of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirped quasi-phase-matched lithium tantalate device was developed using a novel $`$nano-electrode-poling$$ technique. The results presented here represent a breakthrough for the realization of quantum protocols, including QOCT, quantum clock synchronization, and more. Our work will open up possibilities for medical and biological applications.



قيم البحث

اقرأ أيضاً

The dispersion cancellation observed in Hong-Ou-Mandel (HOM) interference between frequency-entangled photon pairs has been the basis of quantum optical coherence tomography and quantum clock synchronization. Here we explore the effect of phase dispe rsion on ultranarrow HOM dips. We show that the higher-order dispersion, the line width of the pump laser, and the spectral shape of the parametric fluorescence have a strong effect on the dispersion cancellation in the high-resolution regime with several experimental verifications. Perfect dispersion cancellation with a linewidth of 3mu m is also demonstrated through 25 mm of water.
We present the first observation of two-photon polarization interference structure in the second-order Glaubers correlation function of two-photon light generated via type-II spontaneous parametric down-conversion. In order to obtain this result, two -photon light is transmitted through an optical fibre and the coincidence distribution is analyzed by means of the START-STOP method. Beyond the experimental demonstration of an interesting effect in quantum optics, these results also have considerable relevance for quantum communications.
Optical-coherence tomography (OCT) is a technique that employs light in order to measure the internal structure of semi-transparent, e.g. biological, samples. It is based on the interference pattern of low-coherence light. Quantum-OCT (QOCT), instead , employs the correlation properties of entangled photon pairs, for example, generated by the process of spontaneous parametric downconversion (SPDC). The usual QOCT scheme uses photon pairs characterised by a joint-spectral amplitude with strict spectral anti-correlations. It has been shown that, in contrast with its classical counterpart, QOCT provides resolution enhancement and dispersion cancellation. In this paper, we revisit the theory of QOCT and extend the theoretical model so as to include photon pairs with arbitrary spectral correlations. We present experimental results that complement the theory and explain the physical underpinnings appearing in the interference pattern. In our experiment, we utilize a pump for the SPDC process ranging from continuous wave to pulsed in the femtosecond regime, and show that cross-correlation interference effects appearing for each pair of layers may be directly suppressed for a sufficiently large pump bandwidth. Our results provide insights and strategies that could guide practical implementations of QOCT.
Even-order dispersion cancellation, an effect previously identified with frequency-entangled photons, is demonstrated experimentally for the first time with a linear, classical interferometer. A combination of a broad bandwidth laser and a high resol ution spectrometer was used to measure the intensity correlations between anti-correlated optical frequencies. Only 14% broadening of the correlation signal is observed when significant material dispersion, enough to broaden the regular interferogram by 4250%, is introduced into one arm of the interferometer.
Owing to a reduced solar background and low propagation losses in the atmosphere, the 2- to 2.5-$mu$m waveband is a promising candidate for daylight quantum communication. This spectral region also offers low losses and low dispersion in hollow-core fibers and in silicon waveguides. We demonstrate for the first time the capability for entanglement-based quantum key distribution (QKD) at 2.1 $mu$m, obtaining a positive secure-key rate (0.417 bits/pair, with a quantum bit error rate of 5.43%) using near-maximally entangled photon pairs in a proof-of-principle device-independent QKD scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا