ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstruction for models on random graphs

223   0   0.0 ( 0 )
 نشر من قبل Andrea Montanari
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider a collection of random variables attached to the vertices of a graph. The reconstruction problem requires to estimate one of them given `far away observations. Several theoretical results (and simple algorithms) are available when their joint probability distribution is Markov with respect to a tree. In this paper we consider the case of sequences of random graphs that converge locally to trees. In particular, we develop a sufficient condition for the tree and graph reconstruction problem to coincide. We apply such condition to colorings of random graphs. Further, we characterize the behavior of Ising models on such graphs, both with attractive and random interactions (respectively, `ferromagnetic and `spin glass).



قيم البحث

اقرأ أيضاً

A bootstrap percolation process on a graph $G$ is an infection process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round each uninfected node which has at least $r$ infected neighbours becomes infect ed and remains so forever. The parameter $rgeq 2$ is fixed. Such processes have been used as models for the spread of ideas or trends within a network of individuals. We analyse bootstrap percolation process in the case where the underlying graph is an inhomogeneous random graph, which exhibits a power-law degree distribution, and initially there are $a(n)$ randomly infected nodes. The main focus of this paper is the number of vertices that will have been infected by the end of the process. The main result of this work is that if the degree sequence of the random graph follows a power law with exponent $beta$, where $2 < beta < 3$, then a sublinear number of initially infected vertices is enough to spread the infection over a linear fraction of the nodes of the random graph, with high probability. More specifically, we determine explicitly a critical function $a_c(n)$ such that $a_c(n)=o(n)$ with the following property. Assuming that $n$ is the number of vertices of the underlying random graph, if $a(n) ll a_c(n)$, then the process does not evolve at all, with high probability as $n$ grows, whereas if $a(n)gg a_c(n)$, then there is a constant $eps>0$ such that, with high probability, the final set of infected vertices has size at least $eps n$. It turns out that when the maximum degree is $o(n^{1/(beta -1)})$, then $a_c(n)$ depends also on $r$. But when the maximum degree is $Theta (n^{1/(beta -1)})$, then $a_c (n)=n^{beta -2 over beta -1}$.
137 - Van Hao Can 2017
In a recent paper [15], Giardin{`a}, Giberti, Hofstad, Prioriello have proved a law of large number and a central limit theorem with respect to the annealed measure for the magnetization of the Ising model on some random graphs including the random 2 -regular graph. We present a new proof of their results, which applies to all random regular graphs. In addition, we prove the existence of annealed pressure in the case of configuration model random graphs.
We consider ferromagnetic Ising models on graphs that converge locally to trees. Examples include random regular graphs with bounded degree and uniformly random graphs with bounded average degree. We prove that the cavity prediction for the limiting free energy per spin is correct for any positive temperature and external field. Further, local marginals can be approximated by iterating a set of mean field (cavity) equations. Both results are achieved by proving the local convergence of the Boltzmann distribution on the original graph to the Boltzmann distribution on the appropriate infinite random tree.
The voter model is a classical interacting particle system modelling how consensus is formed across a network. We analyse the time to consensus for the voter model when the underlying graph is a subcritical scale-free random graph. Moreover, we gener alise the model to include a `temperature parameter. The interplay between the temperature and the structure of the random graph leads to a very rich phase diagram, where in the different phases different parts of the underlying geometry dominate the time to consensus. Finally, we also consider a discursive voter model, where voters discuss their opinions with their neighbours. Our proofs rely on the well-known duality to coalescing random walks and a detailed understanding of the structure of the random graphs.
Let a random geometric graph be defined in the supercritical regime for the existence of a unique infinite connected component in Euclidean space. Consider the first-passage percolation model with independent and identically distributed random variab les on the random infinite connected component. We provide sufficient conditions for the existence of the asymptotic shape and we show that the shape is an Euclidean ball. We give some examples exhibiting the result for Bernoulli percolation and the Richardson model. For the Richardson model we further show that it converges weakly to a nonstandard branching process in the joint limit of large intensities and slow passing times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا