ﻻ يوجد ملخص باللغة العربية
We consider ferromagnetic Ising models on graphs that converge locally to trees. Examples include random regular graphs with bounded degree and uniformly random graphs with bounded average degree. We prove that the cavity prediction for the limiting free energy per spin is correct for any positive temperature and external field. Further, local marginals can be approximated by iterating a set of mean field (cavity) equations. Both results are achieved by proving the local convergence of the Boltzmann distribution on the original graph to the Boltzmann distribution on the appropriate infinite random tree.
In a recent paper [15], Giardin{`a}, Giberti, Hofstad, Prioriello have proved a law of large number and a central limit theorem with respect to the annealed measure for the magnetization of the Ising model on some random graphs including the random 2
The goal of this paper is to provide a general purpose result for the coupling of exploration processes of random graphs, both undirected and directed, with their local weak limits when this limit is a marked Galton-Watson process. This class include
Consider a statistical physical model on the $d$-regular infinite tree $T_{d}$ described by a set of interactions $Phi$. Let ${G_{n}}$ be a sequence of finite graphs with vertex sets $V_n$ that locally converge to $T_{d}$. From $Phi$ one can construc
Consider a collection of random variables attached to the vertices of a graph. The reconstruction problem requires to estimate one of them given `far away observations. Several theoretical results (and simple algorithms) are available when their join
We study infinite ``$+$ or ``$-$ clusters for an Ising model on an connected, transitive, non-amenable, planar, one-ended graph $G$ with finite vertex degree. If the critical percolation probability $p_c^{site}$ for the i.i.d.~Bernoulli site percolat