ﻻ يوجد ملخص باللغة العربية
Single walled carbon nanotubes exhibit advanced electrical and surface properties useful for high performance nanoelectronics. Important to future manufacturing of nanotube circuits is large scale assembly of SWNTs into aligned forms. Despite progress in assembly and oriented synthesis, pristine SWNTs in aligned and close-packed form remain elusive and needed for high current, speed and density devices through collective operations of parallel SWNTs. Here, we develop a Langmuir Blodgett method achieving monolayers of aligned SWNTs with dense packing, central to which is a non covalent polymer functionalization by PmPV imparting high solubility and stability of SWNTs in an organic solvent DCE. Pressure cycling or annealing during LB film compression reduces hysteresis and facilitates high degree alignment and packing of SWNTs characterized by microscopy and polarized Raman spectroscopy. The monolayer SWNTs are readily patterned for device integration by microfabrication, enabling the highest currents 3mA through the narrowest regions packed with aligned SWNTs thus far.
Single-walled carbon nanotubes are promising nanoelectronic materials but face long-standing challenges including production of pure semiconducting SWNTs and integration into ordered structures. Here, highly pure semiconducting single-walled carbon n
Although a considerable number of solvent based methodologies have been developed for exfoliating black phosphorus, so far there are no reports on controlled organization of these exfoliated nanosheets on substrates. Here, for the first time to the b
We have calculated the binding energy of various nucleobases (guanine (G), adenine (A), thymine (T) and cytosine (C)) with (5,5) single-walled carbon nanotubes (SWNTs) using ab-initio Hartre-Fock method (HF) together with force field calculations. Th
Diffusion Monte Carlo calculations on the adsorption of $^4$He in open-ended single walled (10,10) nanotubes are presented. We have found a first order phase transition separating a low density liquid phase in which all $^4$He atoms are adsorbed clos
Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically-resolved electron energy-loss spectroscopy to detect individual nitrogen dop