ترغب بنشر مسار تعليمي؟ اضغط هنا

تقدير التّبخر- نتح المرجعي الشَّهري في منطقة صافيتا باستخدام الشَّبكة العصبيَّة الصنعيَّة

Estimation of Monthly Reference Evapotranspiration in Safita Area by using Artificial Neural Network

2047   1   60   0 ( 0 )
 تاريخ النشر 2013
  مجال البحث الهندسة الإنشائية
والبحث باللغة العربية
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يشكّل التبخر-نتح أحد عناصر الدورة الهيدرولوجية، الذي يصعب قياس كمياته الفعلية في الشروط الحقلية، لذلك يجري تقديره انطلاقاً من علاقات تجريبية تعتمد على بيانات عناصر المناخ، و تتضمن تلك التقديرات أخطاء متنوّعة بسبب عمليات التقريب. و يهدف البحث إلى تقدير دقيق لكمية التبخر الشهري في منطقة صافيتا, و يعتمد البحث على تقانة الشبكة العصبية الصنعية، حيث بُني الأنموذج الرياضي باستخدام Neural Fitting Tool (nftool) إحدى أدوات الماتلاب، و اعتمد الأنموذج على البيانات الشهرية لدرجة حرارة الهواء و الرطوبة النسبية في محطة صافيتا، كما استُخدِمت بيانات التبخر الشهري من حوض التبخر الأميركي صنف A لغرض التحقق من صحة أداء الشبكة، بعد تحويل الأنموذج إلى شكل قالب جاهز باستخدام تقانة Simulink المتاحة في حزمة برمجيات الماتلاب. أثبتت نتائج الدراسة أنَّ الشبكة العصبية الصنعيَّة متعددة الطبقات، و ذات الانتشار العكسي للخطأ تعطي نتائج جيدة في تقويم التبخر الشهري، اعتماداً على مجموعة البيانات المستخدَمة.


ملخص البحث
تتناول هذه الدراسة تقدير التبخر - نتح المرجعي الشهري في منطقة صافيتا باستخدام الشبكة العصبية الصنعية. يعتبر التبخر - نتح أحد عناصر الدورة الهيدرولوجية الذي يصعب قياسه بدقة في الظروف الحقلية، لذا يتم تقديره باستخدام علاقات تجريبية تعتمد على بيانات المناخ. تم بناء النموذج الرياضي باستخدام أداة Neural Fitting Tool في برنامج الماتلاب، معتمدين على بيانات درجة حرارة الهواء والرطوبة النسبية من محطة صافيتا المناخية. للتحقق من صحة أداء الشبكة، تم استخدام بيانات التبخر الشهري من حوض التبخر الأمريكي صنف A. أظهرت النتائج أن الشبكة العصبية الصنعية متعددة الطبقات وذات الانتشار العكسي للخطأ تعطي نتائج جيدة في تقدير التبخر الشهري. تم استخدام تقانة Simulink لتحويل النموذج إلى قالب جاهز. توصلت الدراسة إلى أن استخدام الشبكات العصبية الصنعية يمكن أن يكون بديلاً فعالاً ودقيقاً لتقدير التبخر - نتح المرجعي مقارنة بالطرق التقليدية مثل معادلة إيفانوف. كما أوصت الدراسة بإجراء قياسات حقلية إضافية واستخدام الشبكات العصبية لدراسة مسائل أخرى تتعلق بالموارد المائية في سوريا.
قراءة نقدية
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة نحو استخدام التقنيات الحديثة في تقدير التبخر - نتح المرجعي، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، الاعتماد على بيانات من محطة واحدة قد لا يكون كافياً لتعميم النتائج على مناطق أخرى، لذا يفضل توسيع نطاق الدراسة لتشمل محطات مناخية متعددة. ثانياً، رغم أن الشبكات العصبية الصنعية أثبتت دقتها في هذه الدراسة، إلا أن هناك حاجة لمقارنة نتائجها مع طرق أخرى حديثة مثل الخوارزميات الجينية أو نظام الاستدلال العصبي الضبابي التكيفي. ثالثاً، لم تذكر الدراسة تأثير العوامل البيئية الأخرى مثل سرعة الرياح والإشعاع الشمسي بشكل مفصل، والتي قد تكون لها تأثيرات كبيرة على التبخر - نتح. وأخيراً، يفضل إجراء دراسات طويلة الأمد للتحقق من استدامة ودقة النموذج عبر فصول ومواسم مختلفة.
أسئلة حول البحث
  1. ما هو الهدف الرئيسي من هذه الدراسة؟

    الهدف الرئيسي هو تقدير التبخر - نتح المرجعي الشهري في منطقة صافيتا باستخدام الشبكة العصبية الصنعية.

  2. ما هي البيانات المستخدمة في بناء النموذج الرياضي؟

    تم استخدام البيانات الشهرية لدرجة حرارة الهواء والرطوبة النسبية من محطة صافيتا المناخية، بالإضافة إلى بيانات التبخر الشهري من حوض التبخر الأمريكي صنف A.

  3. ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟

    أثبتت الدراسة أن الشبكة العصبية الصنعية متعددة الطبقات وذات الانتشار العكسي للخطأ تعطي نتائج جيدة في تقدير التبخر الشهري، وأنها أكثر دقة من معادلة إيفانوف.

  4. ما هي التوصيات التي قدمتها الدراسة؟

    أوصت الدراسة بإجراء قياسات حقلية إضافية للتبخر - نتح الحقيقي، وتوسيع استخدام الشبكات العصبية لدراسة مسائل متنوعة تتعلق بالموارد المائية في سوريا.


المراجع المستخدمة
DOORENBOS, J.; PRUITT, W.O. GuideLines for Predicting Crop Water Requirement. Food and Agriculture Organization of the United Nations (FAO).  N .24,1977,156
RAGHUWANSHI, N.S.; WALLENDER, W.W. Converting from pan Evaporation to Evapotranspiration. Journal of Irrigation and Drainage Engineering. Vol. 124, 1998, 275-277
FAO Corporate Document Repository. Crop Evapotranspiration. Natural Resources Management and environment Department, 2008
قيم البحث

اقرأ أيضاً

تُعتبر القدرة على التقدير والتنبّؤ الدقيق بالظواهر الهيدرولوجيّة من العوامل الأساسيّة في تنمية وإدارة الموارد المائيّة، ووضع الخطط المائيّة المستقبليّة وفق سيناريوهات التغيّرات المناخيّة المختلفة، ويعد التبخّر نتح أحد أهم العوامل في الدورة الهيدرولوج يّة ومن أكثرها تعقيداً، كما أنّ القدرة على التنبّؤ الدقيق بقيم هذه الظاهرة هي من العوامل المهمّة في العديد من تطبيقات الموارد المائيّة. لذلك تهدف هذه الدراسة إلى التنبّؤ بقيم التبخر نتح المرجعي الشهري (ET0) في محطّة حمص المناخيّة، في المنطقة الوسطى من الجمهوريّة العربيّة السوريّة، باستخدام الشبكات العصبيّة الاصطناعيّة (ANNs) ونظام الاستدلال الضبابي (FIS)، بالاعتماد على البيانات المناخيّة المتاحة، والمقارنة بين نتائج هذه النماذج. تضمّنت البيانات المستخدمة 347 قيمة شهريّة لدرجة حرارة الهواء (T)، الرطوبة النسبيّة(RH) ، سرعة الرياح(WS) وعدد ساعات السطوع الشمسي(SS) (من تشرين الأول 1975 وحتى كانون الأول 2004)، في حين حُسبت قيم التبخّر نتح المرجعي الشهري باستخدام طريقة بنمان مونتيث، والتي هي الطريقة المرجعيّة المعتمدة من قبل المنظمة الدوليّة للزراعة والأغذية التابعة للأمم المتحدة (FAO)، واستُخدمت هذه القيم كمخرجات للنماذج. أظهرت نتائج الدراسة أنّ نماذج الشبكات العصبيّة الاصطناعيّة ذات التغذية الأماميّة والانتشار العكسي للخطأ تمكّنت من التنبّؤ بقيم التبخّر نتح المرجعي الشهري بنجاح، حيث أعطت النماذج قيماً منخفضة لجذر متوسّط مربّعات الأخطاء (RMSE) ومرتفعة لمعاملات الارتباط(R) ، وكذلك تبيّن أنّ استخدام ترتيب الشهر كمُدخل إضافي يُحسّن من دقّة التنبّؤ للشبكات العصبيّة الاصطناعيّة. أظهرت النتائج أيضاً القدرة الجيّدة لنماذج الاستدلال الضبابي على التنبّؤ بقيم التبخّر نتح المرجعي الشهري، حيث تبيّن أن عدد ساعات السطوع الشمسي هي أكثر العوامل المناخيّة المنفردة تأثيراً في عمليّة التنبّؤ، حيث بلغ معامل الارتباط 97.71% وجذر متوسّط مربّعات الأخطاء 18.08 mm/month خلال مرحلة الاختبار للنموذج، في حين كان عدد ساعات السطوع الشمسي وسرعة الرياح أكثر عاملين مؤثرين سويةً على عمليّة التنبّؤ بمعامل ارتباط 98.55% وجذر متوسّط مربّعات أخطاء 12.49 mm/month خلال مرحلة الاختبار للنموذج. أظهر هذا البحث الموثوقيّة العالية لاستخدام الشبكات العصبيّة الاصطناعيّة ونظام الاستدلال الضبابي في التنبّؤ بقيم التبخر نتح المرجعي الشهري، مع وجود أفضليّة بسيطة للشبكات العصبيّة الاصطناعيّة، والتي يمكن أن تضيف ترتيب الشهر إلى طبقة المدخلات الأمر الذي يزيد من دقّة التنبّؤات. توصي هذه الدراسة بالتوسّع في استخدام تقنيّات الذكاء الاصطناعي في نمذجة الظواهر المعقّدة واللاخطيّة المتعلقة بالموارد المائيّة.
يعتبر التبخر- نتح أحد المكونات الهامة في الدورة الهيدرولوجية، و تعد القدرة على التنبؤ الدقيق بقيم هذه الظاهرة من العوامل الهامة في العديد من تطبيقات الموارد المائية. تهدف هذه الدراسة إلى التنبؤ بقيم التبخر نتح المرجعي الشهري, باستخدام الشبكات العصبية الاصطناعية و نظام الاستدلال الضبابي.
التبخر هو أحد العناصر الأساسية للدورة الهيدرولوجية و ضروري للعديد من الدراسات مثل الموازنة المائية, تصميم أنظمة الري و إدارة الموارد المائية, و يتطلب تقديره معرفة العديد من العناصر المناخية. على الرغم من أن هناك صيغاً تجريبيَّةً متوفرةً لتقدير التبخر , و لكن أداء هذه الصيغ غير دقيق بسبب الطبيعة المعقدة لعملية التبخر. لذلك فإن هذا البحث يهدف لوضع نموذج شبكة عصبية صنعيَّة للتنبؤ بالتبخر الشهري في منطقة حماه باستخدام ثلاثة عناصر مناخية هي درجة الحرارة, الرطوبة النسبية و سرعة الرياح. من أجل ذلك فقد بُني النموذج باستخدام مكتبة nntool-box إحدى أدوات الـ MATLAB. استُخدمت الشبكة العصبية الصنعيَّة ذات التغذية الأمامية و الانتشار العكسي للخطأ بطبقة خفية واحدة لبناء النموذج. و تم تقييم شبكات مختلفة بعدد مختلف من العصبونات و بتغيير دوال التفعيل المستخدمة في كل طبقة. و استُخدم جذر متوسط مربع الخطأ (RMSE) لتقييم دقة النموذج المُقترح. و قد بينت الدراسة أن الشبكة العصبية الصنعيَّة ذات الهيكلية (3-14-1) هي الأفضل للتنبؤ بالتبخر في منطقة حماه حيث كانت قيمة RMSE تساوي (21.5mm/month) و قيمة R2 مساوية (0.97). توصي الدراسة باستخدام أنواع أخرى من الشبكات العصبية لتقدير التبخر.
التنبّؤ بالطقس و خاصةً الأمطار، هي واحدة من المهام العملية الأكثر تحدياً و أهمية، و التي تقوم بها خدمات الأرصاد الجوية في جميع أنحاء العالم، علاوة على كونه إجراء معقد يتطلب مجالات متخصصة و متعددة من الخبرات. في هذه الورقة، أقترح نموذج الشبكات العصبي َّة (ANNs) مع تحويل المويجات كأداة للتنبؤ بالأمطار الشّهرية بشكل متتالي بالاعتماد على البيانات السابقة لهطول الأمطار (1933-2009)، المأخوذة من محطة حمص للأرصاد الجوية. حيث تم تحليل السلسلة الزمنية للأمطار إلى معاملاتها التفصيلية و التقريبية على ثلاث مستويات باستخدام تحويل المويجات المتقطع (Discrete Wavelet Transform (DWT، و استخدمت الشَّبكة العصبيَّة أمامية التغذية مع خوارزمية الانتشار العكسي في عملية التعلم و التنبّؤ. توصلت الدراسة إلى أن الشبكة العصبية WNN ذات الهيكلية (1-8-8-8-5)، قادرة على التنبؤ بالأمطار الشهرية في محطة حمص على المدى الطويل بمعامل تحديد وجذر متوسط مربعات الأخطاء (7.74mm,0.98) على الترتيب. تقدم تقنية تحويل المويجات ميزة مفيدة قائمة على تحليل البيانات، مما يحسن من أداء النموذج، و تطبق هذه التقنية في نماذج الشبكات العصبية الاصطناعية للأمطار لأنها بسيطة، كما يمكن تطبيق هذه التقنية لنماذج أخرى.
يعتبر التبخّر مكوّناُ أساسيّاً في الدورة الهيدرولوجيّة، و هو يلعب دوراً مؤثّراً في تطوير و إدارة الموارد المائيّة. تهدف هذه الدراسة إلى التنبّؤ بالتبخّر الإنائي الشهري في محطة حمص المناخيّة باستخدام الشبكات العصبيّة الاصطناعيّة. و قد اعتمدت الدراسة م ن أجل ذلك على القيم الشهريّة لدرجة حرارة الهواء و الرطوبة النسبيّة فقط كمدخلات، واعتمدت التبخّر الإنائي الشهري كمُخرج للشبكة. استُخدمت خوارزميّة الانتشار العكسي في عمليّة تدريب و تحقيق الشبكة مع تغيير طرائق التدريب و عدد الطبقات الخفيّة و عدد العصبونات في كل طبقة منها، و قد أظهرت النتائج القدرة الجيّدة للشبكة العصبيّة الاصطناعيّة ذات الهيكليّة 2-10-1 على التنبؤ بقيم التبخر الإنائي الشهري بمعامل ارتباط كلّي R) 96.786%) و بجذر متوسّط مربّعات الأخطاء RMSE) 24.52 mm/month) لمجموعة البيانات الكاملة، و قد أوصت الدراسة باستخدام تقنية الشبكات العصبية الاصطناعية لتحديد العناصر الأكثر تأثيراً على التبخر.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا